Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Серная кислота, воздействие на металлы и сплавы

Для закалки могут применяться высокотемпературные печи, способные обеспечить температуру 1000—1050° С, а для отпуска среднетемпературные. При горячей прокатке, закалке и отжиге поверхность цветных металлов и сплавов окисляется. Окислы в большинстве случаев должны удаляться. Иногда (когда окалина хрупкая) это достигается замочкой в воде, однако наиболее распространенным является химическое травление. При химическом травлении металл погружают в травитель, который быстро растворяет окислы на поверхности и практически не воздействует на сплав. Большинство медных сплавов травятся в 10—15%-ном растворе серной кислоты. После травления металл поступает на промывку и сушку.  [c.43]


Никель — металл серебристо-белого цвета, тягучий и ковкий. До 360° С никель ферромагнитен, свыше — парамагнитен. Отливка производится при 1500—1600° С, прокатка — при 1100—1200° С и в холодном состоянии. Отжиг наклепанного никеля при 750—900° С. Механические свойства зависят от содержания примесей и вида обработки. Никель при нормальных температурах химически стоек к воздействию воздуха, пресной и соленой воды. В серной и соляной кислотах медленно растворяется, в азотной — легко. Щелочные соли (расплавленные и водные растворы) на никель не действуют. Никель используют как легирующий компонент при выплавке качественной стали (до 80% производства) и для образования сплавов с другими цветными металлами, а также для электролитического покрытия металлов, как правило, по предварительно нанесенному медному подслою. Марки никеля определены ГОСТами 849—56 и 492—52 (табл. Й). Никель вакуумной плавки марок НВ и НВК выпускается по МРТУ 14-14-46-65. Химический анализ никеля производят по ГОСТам 13047.1-67- 13047.18—67.  [c.102]

Никель — металл серебристо-белого цвета, тягучий и ковкий. До 360° G никель ферромагнитен, свыше этой температуры — парамагнитен. Отливка производится при 1500—1600° С, прокатка —при 1100—1200° С и в холодном состоянии. Отжиг наклепанного никеля — при 750—900° С. Механические свойства зависят от содержания примесей и вида обработки. Никель при нормальных температурах химически стоек к воздействию воздуха, пресной и соленой воде. В серной и соляной кислотах растворяется медленно, в азотной — быстро. Щелочные соли (расплавленные и водные растворы) на никель не действуют. Никель употребляется как легирующий компонент при выплавке качественной стали (до 80% производства) и в сплавах с другими цветными металлами, а также для электролитического покрытия металлов, как правило, по нанесен-  [c.185]

Большинство конструкционных материалов представляет собой сплавы, из которых возможна избирательная диффузия отдельных компонентов в жидкий металл и обеднение контактной поверхностной зоны твердого металла более легко растворимым элементом. Примеры такой селективной коррозии довольно часто встречаются в инженерной практике, причем не только в результате коррозионного воздействия жидких металлов, но и в водных растворах. Известно, например, когда после промежуточного отжига прокатанных латунных изделий в результате травления в растворе серной кислоты поверхность их обогащается медью из-за избирательного удаления цинка. Действие жидких свинца, висмута и их сплавов на хромоникелевые стали вызывает избирательную диффузию никеля в жидкий металл и это часто приводит к переходу аустенитной структуры стали в ферритную [90, 91]. Как указывалось выше (см. гл. 1), возможна и межкристаллитная коррозия из-за большей поверхностной энергии на границе двух зерен твердого металла [92, 93].  [c.301]


Ni как легирующий элемент играет очень важную роль в коррозионностойких сталях. Он практически не подвержен коррозионному воздействию воды и водных растворов солей. Сам по себе и в составе сплавов на основе Fe этот металл обладает повышенной сопротивляемостью воздействию серной кислоты невысоких концентраций. Благодаря данному свойству Ni были разработаны стали, имеющие высокую коррозионную стойкость в серной и фосфорной кислотах различных концентраций при повышенных температурах, что позволило создать новые процессы производства ряда продуктов в химической и нефтехимической промышленности.  [c.23]

На возможность пассивирования металлов кислородом воды указывает и Хор. Основанием для такого утверждения явились эксперименты, в которых с помощью меченых атомов было установлено, что при анодном окислении никеля в серной кислоте из воды переходило на металл гораздо больше кислорода, чем из сульфат-ионов. В литературе встречается и ряд других указаний, свидетельствующих о пассивирующих свойствах воды. В частности, Эванс сообщает любопытный факт 99%-ная уксусная кислота не оказывала никакого коррозионного воздействия на алюминий, однако стоило из нее удалить 0,05% воды, как скорость коррозии увеличилась в 100 раз. В диметилформамиде, содержавшем серную кислоту, никель переходил в пассивное состояние, когда концентрация воды превышала 0,2%. В отсутствие воды никель активно растворялся. Описаны также случаи пассивирования титана незначительными количествами воды в неводных средах, а также алюминиевых сплавов и нержавеющих сталей в окислителях.  [c.70]

Поскольку коррозионная стойкость связана с образованием защитной пленки, то очевидно, что поведение сплавов будет значительно различаться при экспозиции в разных средах. Разрушение металла в значительной степени определяется растворимостью и другими свойствами пленки. Например, фторид магния очень плохо растворяется в плавиковой кислоте, и, как следствие, магний в такой среде также не разрушается. Пленка фторида магния образуется на начальной стадии коррозии, и хотя эта пленка восприимчива к другим агрессивным воздействиям, она надежно предохраняет металл от дальнейшей коррозии. В разбавленных водных растворах плавиковой кислоты коррозия может возникать, и если это случается, то разрушение носит питтинговый характер и напоминает коррозию в водопроводной воде. И действительно, коррозия в этом случае вызывается не кислотой, а именно водой. Другой пример сульфат магния хорошо растворим в разбавленной серной кислоте, а при взаимодействии магния с этой кислотой никакой защитной пленки не возникает. Металл непрерывно и быстро разрушается с выделением водорода. Следует, однако, заметить, что в концентрированной серной кислоте сульфат магния растворим лишь незначительно, поэтому образующаяся сразу после погружения магния  [c.126]

На воздухе алюминий покрывается пленкой окиси, которая надежно защищает металл от дальнейшей коррозии. Азотная и органические кислоты на алюминий не действуют, но он разрушается при воздействии щелочей, соляной и серной кислот. Исходный технический алюминий выпускается под названием алюминий первичный, из которого получают алюминиевые сплавы, подразделяемые на три основные группы литейные, порошковые и деформируемые.  [c.7]

Палладий в сравнении с платиной, родием и иридием обладает значительно меньшей стойкостью к химическому воздействию. Теоретическая коррозионная диаграмма палладия (рис. 4,5) показывает, что в-отсутствие сильных окислителей и комплексообразующих веществ металл должен быть устойчив в водных растворах с любыми pH. И действительно, на практике палладий не корродирует в хлорной воде (если ее температура невысока) и не тускнеет во влажном воздухе. При обычных температурах на палладий не действуют такие кислоты, как уксусная, щавелевая,, плавиковая и серная, однако сильные окислительные кислоты, например смесь соляной кислоты с азотной, быстро разрушают палладий. Разбавленная азотная кислота вызывает медленную коррозию, но в концентрированной кислоте металл корродирует быстро. Сплавы палладия с платиной в значительной степени сохраняют коррозионную стойкость платины, В обычных атмосферах палладий не тускнеет, но в промышленных атмосферах, содержащих двуокись серы, может наблюдаться некоторое потускнение, связанное с образованием сульфидной пленки. Щелочные растворы, даже при наличии в них окислителей, никакого влияния иа палладий не оказывают Это может быть связано с образованием тонкой пассивной пленки окиси палладия Р(50 [более устойчивой, чем Р(5(0Н)г], препятствующей дальнейшей коррозии.  [c.220]


Неметаллические материалы в отличие от металлов и сплавов практически неэлектропроводны, а следовательно, при воздействии на них растворов электролитов исключается возможность возникновения гальванических элементов. В связи с этим неметаллические конструкционные материалы и защитные неметаллические покрытия в меньшей степени подвержены коррозии, чем металлы, и могут в ряде случаев обеспечить длительный срок эксплуатации основных сооружений. Например, во всех процессах, связанных с применением серной кислоты, наблюдается интенсивная коррозия свинца, а также имеет место коррозия нержавеющей стали типа Х18Н10Т, поэтому задача аппаратурного оформления может быть часто решена только при условии применения металлических материалов.  [c.194]

Кислотостойкие сплавы, содержащие молибден, вольфрам, кремний и цирконий. В поисках повышения стойкости по отношению к кислотам естественно обратились к металлам со слабо развитым основным характером. Молибден и вольфрам, окислы которых реагируют скорее как кислоты, а не основания, склонны становиться пассивными в растворах кислот, и активными в щелочных растворах. Эти металлы в чистом виде применяются редко но небольшое количество вольфрама часто добавляется в Англии к 18/8 хромоникелевым сталям для увеличения химической стойкости. Добавка 2—8% молибдена к 18/8 хромоникелевой стали значительно. повышает стойкость ее по отношению к слабой серной кислоте, причем по данным Шафмейстера и Готта стойкость не уменьшается заметно ири холодной прокатке, как у сплавов без молибдена. Табл. 40 представляет данные Рона относительно воздействия на различные металлы и сплавы горячих кислот.  [c.478]

Наоборот, коррозия во влажной двуокиси серы, как правило, бывает сильнее, чем в сухом газе, что явно объясняется воздействием серной кислоты. Как установил Вернон [550], примесь 0,01% двуокиси серы в сухом воздухе практически не оказывает никакого влияния на скорость корродирования таких металлов, как сталь, цинк или медь. Однако при наличии этой примеси во влажном воздухе быстрое корродирование наблюдалось даже при комнатной температуре. И при высоких температурах (350—1000° С) стали корродируют гораздо сильнее во влажной двуокиси серы, чем в сухой [884]. Как установлено, богатые никелем сплавы обладают сравнительно удовлетворительной коррозионной стойкостью только в сухой двуокиси серы [876, 884], тогда как во влажной двуокиси они быстро разъедаются как при высоких, так и при низких температурах [883, 884], Окалина, образующаяся на чистом никеле в атмосфере сухой двуокиси серы, состоит из N10 и NiS в виде отдельных фаз [885], которые возникли по реакции 3Ni + (SO2) = NiS + 2NiO. Так как окорость коррозии пропорциональна корню квадратному из  [c.385]

Никелю как легирующему элементу в коррозионностойкнх сталях принадлежит очень важная роль. Вода, водные растворы солей практически не оказывают коррозионного воздействия на этот металл. Кроме того, он обладает повышенным сопротивлением действию серной кислоты невысоких концентраций, причем это свойство никеля проявляется и в том случае, когда он входит в состав железных сплавов. На этом основании были созданы стали, обладающие высокой коррозионной стойкостью в фосфорной и серной кислотах различных концентраций при повышенных температурах, что дало возможность организовать новые процессы производства ряда продуктов в химической промышленности, в том числе двойного суперфосфата [67].  [c.109]

Травление заключается в воздействии кислоты на металл. Для стальных поковок применяют 20%-ный раствор серной кислоты прТ1 температуре 60 —90 С при этом кислота вступает во взаимодействие со сталью, отделяя окалину в виде рыхлой пленки. Травление достаточно широко применяют при очистке поковок из алюминиевых, титановых, медных и магниевых сплавов. Травление стальных поковок применяют сравнительно редко.  [c.121]

Подобные же соображения приложимы к случаям воздействия кислот на сплавы. Серебро растворяется в горячей концентрированной серной кислоте, а золото при этом остается без изменения. Тамманн и Брауне нашли, что если в сплаве больше 50 атомных % золота, то серная кислота при 150° не действует на сплав, но если сплав состоит из 49 атомных % золота, то наблюдается заметное действие. Существование границы р а с т в о р и м о с т и , т. е. состава, при котором сплав начинает растворяться, было предметом обширных дискуссий сущность этого предмета изложена в части В. Для многих систем предел растворшмости наступает тогда, когда половина атомов сплава представляет более растворимый конституент, но это не наблюдается во всех случаях. Часто предел растворимости данного сплава может варьировать в зависимости от характера жидкости. По Графу если жидкость способна хотя бы временно перевести оба металла в раствор, причем происходит быстрое осаждение более благородного металла, предел растворимости соответствует 50 атомным %. В случае более слабых коррозионных агентов, если благородный металл не может перейти временно в жидкость, меньшее количество благородного компонента способно блокировать воздействие и в этом случае предел растворимости падает до 25 атомных %. Однако следует отметить, что высказанная точка зрения разделяется не всеми.  [c.470]

Наиболее устойчивы к коррозии те марки свинца, которые слабо подвержены рекристаллизации. Чем чище свинец, тем менее способен он к рекристаллизации зерна. Коррозионная стойкость свинца объясняется плохой растворимостью продуктов коррозии, образовавшихся на поверхности металла при воздействии агрессивной среды. Эти продукты коррозии в виде плотной пленки защищают металл от дальнейшего проникновения агрессивного раствора и надежно изолируют его от внешней среды. Свинец устойчив в растворах серной кислоты, но при высоких концентрациях, особенно в олеуме, разрушается. Растворы соляной кислоты также слабо действуют на свинец, однако концентрированная соляная кислота при температуре кипения быстро его разрушает. Аэрированная 10%-ная H l при нормальной температуре разрушает свинец со скоростью 0,6—2 мм год, а при 100° С скорость коррозии превышает 4 мм/год. Характерно, что сплав свинца с сурьмой (гартблей) в этих условиях отличается более высокой коррозионной стойкостью. В 10%-ной НС1 скорость коррозии гартблея составляет 0,1 мм год, а при 100°С—только 0,2 мм/год.  [c.116]


Границы растворимости. При использовании сплавов на основе благородных металлов как кислотостойких материалов естественно желание добавить в них как можно больше дешевых компонентов без потери при этом коррозионной стойкости. Обычно эта стойкость уменьшается (иногда резко), если содержание неблагородного металла превышает какую-то определенную величину. Такое поведение сплавов благородных металлов давно известно из опыта работы той отрасли промышленности, где процессы коррозии по существу являются желательными, а именно при разделении металлов при а4х )инаже. В случае отделения золота от серебра сплав нз этих двух металлов обычно подвергают воздействию такой коррозионной среды, которая растворяет серебро и оставляет золото в виде пористого скелета или шлама. Оно может быть осуществлено простым погружением сплава в кислоту окислитель (вроде азотной кислоты или более дешевой горячей концентрированной серной кислоты) или анодной поляризацией сплава от внешней э. д. с. Электролитическое разделение сплава золота и серебра иногда выполняется в две стадии сначала в результате анодной обработки в растворе азотнокислого серебра получается анодная губка из золота, все еще содержащего некоторое количество серебра затем эта губка расплавляется и используется в качестве анода в кислом растворе хлористого золота.  [c.322]

Одно время полагали, что дробеструйная обработка создает устойчивость как против усталости в отсутствие коррозионной среды, так и против коррозионной усталости. Чтобы проверить это положение, Гоулд изучал стойкость против коррозионной усталости образцов из высокоуглеродистой стали, которые подвергались дробеструйной обработке семью различными способами при этом использовалась дробь разных размеров и менялось давление воздуха. Одна серия испытаний на коррозионную усталость проводилась с очень разбавленной серной кислотой (имитировалась кислая влага, конденсирующаяся на стали в промышленных районах), а другая — с морской водой. Для сравнения испытывались очень хорошо отшлифованные образцы. Все образцы, подвергавшиеся дробеструйной обработке, показали более высокую выносливость, чем тонко отшлифованные образцы, но они значительно отличались между собой в области довольно высоких напряжений продолжительность испытания до разрушения в случае наилучшей обработки была примерно в 10 раз больше, чем в случае наихудшей . Благоприятные результаты были получены с крупной дробью при низком давлении или с мелкой дробью при высоком давлении по-видимому, необходимо иметь достаточно толстый поверхностный слой в сжатом состоянии. Интересно, что в случае поверхности, подвергавшейся довольно сильной обработке дробью, последующая кратковременная обработка заостренным крупным песком, придающая поверхности шероховатость, не вызывала никакого снижения стойкости против коррозионной усталости. Это может оказаться полезным, если нужно нанести защитное покрытие на поверхность, обработанную дробью в противном случае, т. е. в отсутствие шероховатости, обычно получается плохое сцепление между покрытием и основным металлом [43]. В связи с плохой сопротивляемостью коррозионной усталости тонко отшлифованного материала, обнаруженной в работе Гоулда, встает вопрос о степени опасности такой обработки. Никаких определенных сведений относительно коррозионной усталости, по-видимому, нет. Что же касается усталости в отсутствие коррозионного воздействия, то, очевидно, тонкая шлифовка может не понизить сопротивления усталости, если она проводится очень тщательно однако к ней лучше не прибегать или выполнять ее так, как это делается на производстве в настоящее время. По-видимому, сказанное относится также и к коррозионной усталости, особенно если учесть, что при шлифовке в поверхность могут оказаться втертыми посторонние вещества, например железные частички в нержавеющую сталь или алюминиевый сплав 44].  [c.666]

В процессе старения в масле образуются кислоты (муравьиная, уксусная, пропионовая, серная и др.), способные непосредственно вступать в химическую реакцию, особенно с металлом подшипниковых сплавов, вызывая их коррозию. Наиболее чувствительными к коррозии являются свинцовистая бронза и свинцовистые баббиты. Эффективность действий антикоррозионных присадок связана прежде всего с защитными пленками, создаваемыми присадками на смазываемых деталях. Они защищают металл от воздействия коррозионно-активных продуктов в масле, уменьшают каталитическое воздействие металла на окисление масла, препятствуют непосредственному контакту и схватыванию металлических поверхностей трущихся пар. Применяемые присадки имеют также нейтрализующие свойства за счет повышенной щелочности. Поэтому важнейшее значение имеют юющие присадки, которые имеются в маслах М14ВЦ, М14ВИ и др. [14, 351.  [c.210]

Растворы нейтральные и щелочные вследствие гидролиза. Растворы солей соляной, угольной, серной, азотной и уксусной кислот почти совершенно не действуют на сплавы № — Сг. Скорость коррозии даже в горячих растворах обычно меньше 6 мг1дм -сутки (0,003 см1гоо). Средняя скорость коррозии в холодильных растворах смеси хлористого кальция и хлористого натрия составляет менее 1 мг дм -сутки (0,0005 см1год). Хотя эти сплавы могут подвергаться местным коррозионным воздействиям или точечной коррозии в растворах хлористых металлов, серьезных повреждений обычно не происходит.  [c.287]


Смотреть страницы где упоминается термин Серная кислота, воздействие на металлы и сплавы : [c.77]    [c.181]    [c.16]   
Защита промышленных зданий и сооружений от коррозии в химических производствах (1969) -- [ c.139 , c.144 ]



ПОИСК



Кислота серная

Металлы и сплавы Металлы

Серная кислота, воздействие

Серная кислота, воздействие на металлы

Сплавы металлов



© 2025 Mash-xxl.info Реклама на сайте