Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изгиб листов, виды

Расчёт размеров гнутых деталей в развёрнутом виде производится по нейтральному слою, так как при изгибе листа его наружная поверхность растягивается, а внутренняя сжи-  [c.520]

Колено трубы имеет сложную, выработанную модельными опытами форму. Чтобы упростить опалубку, стараются избегать у колена прихотливых поверхностей и выполнять их в виде подогнанных друг к другу поверхностей простых геометрических тел. Так, на фиг. 7-9 изображена труба с так называемым коленом № 4 и собственной высотой 2,0 ( 7-9). На фигуре указаны виды поверхностей, образующих трубу. Все они линейчатые (плоскости, цилиндры, конусы), кроме одной (тор). У маломощных турбин изогнутая труба иногда изготовляется сваркой из стальных листов. Тогда ее очертание образуется полностью из ряда линейчатых поверхностей, получаемых изгибом листов.  [c.76]


Рычаг изготовляют из стальной поковки, иногда его вырезают из листа и изгибают в виде корыта.  [c.357]

Рычаг изготовляется из поковки углеродистой стали марки 30—40, реже он вырезается из листа и изгибается в виде корыта. Характеристики наиболее распространенных отечественных машин приведены в табл. 22.  [c.255]

Равенство (10-14) является одной из основных зависимостей теории кругового изгиба листа, выводимых из чисто геометрических (кинематических) соображений, вне зависимости от силовой картины явления. Из этого равенства мы видим, что в том случае,  [c.301]

В соединениях по рис. 24, о, б под действием растягивающих сил возникает изгибающий момент, приблизительно равный произведению растягивающей силы на толщину материала (виды з, м). Этот момент отчасти погашается сопротивлением изгибу листов, а частично передается на заклепки.  [c.35]

Если толщина соединяемых деталей превышает 2 — 3 мм, применяют расклепывание лапок (вид б), выполненных с припуском на осадку. Прочность подобных соединений невысока, особенно при изгибе в плоскости, перпендикулярной вертикальному листу. В некоторых случаях эти способы применяют и в силовых конструкциях. На виде в показан узел крепления лопаток к обечайкам кольцевого направляющего аппарата аксиального воздушного компрессора. Благодаря большому числу точек крепления конструкция в данном случае получается достаточно прочной и жесткой.  [c.226]

Листы из сплава ВТ1 испытывают на изгиб по ОСТ 1683 вырезают образцы в виде полосок шириной 15 мм и загибают вокруг оправки, радиус которой равен толщине листа. Минимальный угол загиба зависит от толщины листа, как видно из табл. 8.  [c.366]

Диффузионный слой отличается хорошими адгезионными свойствами. При изгибе на 180° и сложном закручивании листа в, виде спирали нарушения целостности диффузионного слоя не наблюдается (рис. 88).  [c.204]

От выбора вида наполнителя во многом зависят механические свойства полимерного материала. Так, порошкообразные наполнители повышают твердость и предел прочности при сжатии наполнители волокнистой структуры увеличивают прочность на изгиб, особенно при динамическом действии нагрузки еще значительнее повышается прочность в случае использования листового наполнителя, поскольку такой материал может воспринимать и растягивающие напряжения. Полимерные материалы с листовым наполнителем применяют в виде листов, труб, плит, а также в крупногабаритных изделиях простого контура.  [c.366]

Контрольные сварные соединения, из которых вырезают образцы для механических испытаний, должны быть идентичны контролируемым производственным стыкам по марке стали, размерам труб или листов, конструкции, виду соединения и технологии изготовления (режимы сварки, сварочные материалы, термическая обработка и т.п.). Необходимо, чтобы размеры и форма образцов удовлетворяли требованиям стандартов на соответствующий вид испытания. Процедуры испытаний на растяжение, изгиб (сплющивание) и ударную вязкость изложены в государственных стандартах.  [c.379]


Хрупкие разрушения корпусной С. с. могут возникать в процессе постройки корабля при холодной правке листов, при операциях холодной гибки, а также при сварке под влиянием внутр. напряжений. Для избежания хрупких разрушений при операциях холодной правки и гибки достаточно, чтобы листовая С. с. выдерживала испытания на загиб широких проб. Для оценки склонности С. с. к хрупким разрушениям под влиянием внутр. напряжений при сварке применяются др. спец. испытания на ударный изгиб образцов Менаже при темп-ре —40° и испытание на вид излома этим испытаниям не подвергается только углеродистая сталь обычного качества. Установлено, что С. с. не дает хрупких разрушений в процессе постройки корабля, когда, при испытаниях на удар образцов Менаже при понижающихся темп-рах, критич. интервал перехода ее из вязкого состояния в хрупкое лежит ниже —40° (рис. 1). В качестве норм по испытанию при темп-ре —40° берут миним. значения ударной вязкости данной марки стали, находящейся еще в вязком состоянии. При вязком разрушении сталь имеет матовый волокнистый излом, а в случае  [c.279]

Для отделения припуска при разделении какого-либо материала (листов, ленты, труб и т. д.) на части применяют сдвиг, внедрение, локализованный изгиб с растяжением, а для перераспределения материала — все виды формоизменения.  [c.11]

Для изготовления цилиндрической оболочки заготовка в виде листа подается в разведенные приводные валки / и 2 до упора в гибочный валок 3 (рис. 42, штриховая линия). Включается нажимное устройство, перемещающее валок 2, приводные валки сводятся и зажимают лист. Включается настроечное устройство, перемещающее валок 4. При этом лист изгибается до заданной кривизны в области контакта с валками / и 2. Затем включается вращение приводных валков и производится гибка поданного в валки участка заготовки, вращение прекращается, валок 3 перемещается в рабочее положение, такое же, как у валка 4, валок 4 отводится, после чего включается вращение в другую сторону. Вначале через валки про-  [c.101]

Хранение и транспортирование. Слюдинит хранят в закрытое сухом и чистом помещении на стеллажах. При хранении в распакованном виде листы слюдинита перекладывают бумагой и собирают в пачки. Пачки заворачивают во влагонепроницаемую бумагу. Перед применением слюдинит должен не менее суток находиться в отапливаемом помещении с температурой не ниже 10 С. При транспортировании со склада в цех пачки слюдинита следует предохранять от влаги и загрязнения, ударов, трения и изгиба..  [c.218]

Часть заготовки, подвергаемую изгибу, называют изгибаемым участком. На фиг. 95, а показан (вид сбоку) загнутый по радиусу металлический лист толщиной Т. Изгибаемый участок ЭТОГО листа на фигуре заштрихован (условно) в клетку.  [c.106]

Эта формула показывает, чго при изгибе до соприкосновения (г = 0) = 0,5 или 50%. Таким образом, материалы с сужением шейки более 50% такие, как медь, алюминий, железо и многие их сплавы в отожженном состоянии будут выдерживать изгиб до соприкосновения без разрушения. Невозможность довести пластичные материалы до разрушения и определить максимальную пластичность и сопротивление разрушению ограничивает применение метода испытания на изгиб. Поэтому для оценки пластичности высокопластичных материалов в виде листов, проволоки, лент, полос и т. д. применяют так называемую пробу на перегиб, при которой показателем пластичности является число последовательных изгибов образца в противоположных направлениях на 180 до разрушения (не считая первого изгиба на 90°). Это испытание проводится с помощью специального настольного приспособления [1].  [c.48]

Пружины — упругие детали, широко применяемые в машиностроении для амортизации ударов, виброизоляции, создания постоянных заданных сил (например, в передачах трением, тормозах), выполнения роли двигателя после предварительного аккумулирования энергии, измерения сил по величине упругих перемеш,ений и т. д. По виду воспринимаемой нагрузки пружины разделяют на пружины растяжения (рис. 16.1, а), сжатия (рис. 16.1, б, в, г), кручения (рис, 16.1, 5), изгиба (рис. 16.1, е). Упругие детали, составленные из листов одной ширины, но разной длины (рис. 16.1, ж), называемые рессорами, применяют в транспортном машиностроении. По форме пружины разделяют на витые цилиндрические (рис. 16.1, с, б), витые конические (рис. 16.1, е), тарельчатые (рис. 16.1, г). В качестве упругих элементов применяют также детали из резины (например, в упругих муфтах, амортизаторах и т. д.). Наибольшее распространение получили витые цилиндрические пружины из проволоки круглого сечения, При больших нагрузках применяют пружины с прямоугольным сечением витков.  [c.361]


Листы, ленты и прутки поставляют в термически необработанном виде. Режимы окончательной термической обработки (отжига) изделий указаны в ГОСТ 10160—62. Отожженные образцы и изделия должны быть светлыми, чистыми, свободными от окислов, темных пятен и цветов побежалости. После отжига изделия не должны подвергаться в процессе сборки ударам, изгибам, рихтовке, шлифовке, а также чрезмерной затяжке или сдавливанию обмоткой. Кольцеобразные сердечники обычно после отжига закладывают в защитные каркасы, предохраняющие их от механических воздействий.  [c.294]

Из изложенного выше следует, что слюда является весьма высококачественным электроизоляционным материалом, но она может быть получена в больших количествах в виде пластинок (лепестков) лишь ограниченной площади, в то время как для производства электрических машин" необходима изоляция в виде больших листов илп лент. Поэтому, как мы уже упоминали, в изоляции электрических машин слюду используют главным образом в виде клееных слюдяных изделий — миканитов. Миканиты — листовые или рулонные материалы, склеенные из отдельных лепестков слюды при помощи клеящего лака или сухой смолы, иногда с применением волокнистой из бумаги или ткани ( подложки ), которая наклеивается с одной или с обеих сторон подложка увеличивает прочность материала на разрыв и затрудняет отставание лепестков слюды при изгибе материала. Рассмотрим некоторые важнейшие виды миканитов.  [c.156]

Чтобы все листы рессоры работали примерно с одинаковым напряжением, ее выполняют в виде бруса равного сопротивления изгибу (рис. 74). Применение рессор такого вида невозможно из-за конструкционных ограничений. Поэтому брус равного сопротивления изгибу заменяют комплектом листов, размеры которых определяют так, как это указано на рис. 75. Верхние листы рессоры (два — четыре) выполняют одинаковой длины и  [c.117]

Явление сдвига конечного элемента в чистом виде осуществить внешними воздействиями затруднительно, так как оно почти всегда сопровождается изгибом и другими деформациями. Так, при изучении простейшего соединения трех стальных полос на участках заклепки А я В (рис. 47, а, б) обнаруживается явление сдвига одной части ее относительно другой — происходит поперечное смещение материала относительно оси вследствие действия поперечных сил Р. Однако при этом возникают и явления смятия и изгиба заклепка сминается в местах соприкосновения с листами и несколько изгибается от действия изгибающих моментов. При увеличе-  [c.82]

Эмалирование столь тонкого и гибкого материала в виде отдельных листов неосуществимо, так как фольга во время пульверизации изгибается, а в печи скручивается, что нарушает целостность эмалевого слоя. Поэтому эмалируемую фольгу все время приходится держать натянутой и вести эмалирование непрерывным способом.  [c.402]

Недостаток нахлесточных соединений (виды в, д) состоит в том, что под действием растягивающих или сжимающих усилий они подвергаются изгибу моментом, приблизительно равным произведению действующей силы на сумму полутолщин свариваемых листов (виды г, е) и деформируются. Производительность сварки из-за наличия двух швов ни5ке и масса нахлесточных соединений больше, чем стыковых.  [c.167]

Фиг. 16. Виды горячей гибки деталей плоских конструкций а — гибка листа по кривой 6 — изгиб листа под углом в — изгиб уголка под углом полкой внутрь 3— изгиб уголка по кривой полкой наружу д — изгиб швеллера в плоскости стенки е — высадка уголков ж — смалковка и раз.малковка уголкога. Фиг. 16. Виды <a href="/info/90845">горячей гибки</a> деталей плоских конструкций а — <a href="/info/345969">гибка листа</a> по кривой 6 — <a href="/info/136385">изгиб листа</a> под углом в — изгиб уголка под углом полкой внутрь 3— изгиб уголка по кривой полкой наружу д — изгиб швеллера в плоскости стенки е — высадка уголков ж — смалковка и раз.малковка уголкога.
Фиг. И. Виды горячей гибки деталей из прокатной стали а — гибка листа по кривой б — изгиб листа под углом а — изгиб уголка под углом полкой внутрь г — изгиб уголка по кривой полкой наружу 4 — изгиб швеллера в плоскости стенки е — высадка уголков ж — размалковка и смалковка уголков. Фиг. И. Виды <a href="/info/90845">горячей гибки</a> деталей из <a href="/info/171264">прокатной стали</a> а — <a href="/info/345969">гибка листа</a> по кривой б — <a href="/info/136385">изгиб листа</a> под углом а — изгиб уголка под углом полкой внутрь г — изгиб уголка по кривой полкой наружу 4 — изгиб швеллера в плоскости стенки е — высадка уголков ж — размалковка и смалковка уголков.
Рис. I. Виды изгибов листов Рис. 2. Схема правки про- Рис 3. Ра-в-поперечные волны по ширине атной стали На вальцах бочие валк листа (волнистость) б — попереч- ДЛЯ прав- Рис. I. Виды изгибов листов Рис. 2. <a href="/info/273615">Схема правки</a> про- Рис 3. Ра-в-<a href="/info/12457">поперечные волны</a> по ширине атной стали На вальцах бочие валк листа (волнистость) б — попереч- ДЛЯ прав-
Современный самолет имеет конструкцию полумонококового типа, состоящую из тонкостенных листов или обечаек, подкрепленных балками (фермами) и стрингерами для предотвращения потери устойчивости. Внешняя обшивка или стенка образует аэродинамический контур агрегата — фюзеляжа, крыла, стабилизатора. Элементы жесткости крепятся к внутренней поверхности обшивки и воспринимают сосредоточенные нагрузки. Эта конструкция в течение многих лет служила основным объектом аэронавти-ческих исследований и существенно отличает аппараты от обычных строительных конструкций. История создания и сопутствующие вопросы анализа и расчета тонких оболочек описаны Гоффом [5], который отмечает, что фундаментальное выражение фон Кармана для определения разрушения пластины при продольном изгибе или потере устойчивости имеет вид  [c.40]


Малоцикловая усталость в большинстве случаев связана с действием высоких напряжений, поэтому изломам присущи особенности строения, характерные для изломов циклической перегрузки или типично усталостных изломов в зонах, примыкающих к долому. Изломы малоцикловой усталости отличают многооча-говость и вследствие этого расположение зоны долома, близкое к центру сечения образца (при изгибе вращающегося образца), относительно малая длина усталостной трещины и т. д. Рассматриваемые изломы характеризуются наличием заметных следов пластической деформации, особенно на участке окончательного разрушения во всяком случае степень неполного соприкосновения половинок излома при приложении их друг к другу больше, чем у изломов многоцикловой усталости. В очаге, как правило, не наблюдается сильно сглаженной зоны, характерной для типично усталостных изломов. В зоне, соответствующей постепенному развитию разрушения, в ряде случаев наблюдаются радиальные рубцы или рисунок в виде шеврона. Наличие таких рубцов иногда заставляет сомневаться в усталостном происхождении излома. Расшифровке излома может помочь следующее обстоятельство линии шеврона при однократном нагружении не меняют своего угла поворота к поверхности листа, а при повтор-но-статическом нагружении постепенно поворачиваются до угла 60—90° к поверхности. Это происходит, по-видимому, вследствие постепенного перехода плоскодеформированного состояния в 7—349 97  [c.97]

Рис. 81. Влияние холодной деформации на предел текучести и сопротивление КР алюминиевого сплава, содержащего Mg 5,16%, Мп 0,11%, Сг 0,11%, Си 0.09%, в виде листа толщиной 1,6 мм, состаренного в течение I пед при 100 С. Образцы из листов были напряжены путем изгиба при постоянной деформации в специальном приспособлении (скобе) и испытывались в растворе 3,5% N301 при переменном погружении [51] (т — долговечность) Рис. 81. <a href="/info/666246">Влияние холодной деформации</a> на <a href="/info/1680">предел текучести</a> и сопротивление КР <a href="/info/29899">алюминиевого сплава</a>, содержащего Mg 5,16%, Мп 0,11%, Сг 0,11%, Си 0.09%, в виде листа толщиной 1,6 мм, состаренного в течение I пед при 100 С. Образцы из листов были напряжены путем изгиба при постоянной деформации в <a href="/info/65695">специальном приспособлении</a> (скобе) и испытывались в растворе 3,5% N301 при переменном погружении [51] (т — долговечность)
Станки тяжёлой конструкции имеют станины в виде коробчатой длинной и высокой плиты. Важное значение имеет форма горизонтальных направляющих для ползуна направляющие в виде ласточкина хвоста могут иметь сплошные закраины у станины, они дешевле в изготовлении, чем прямоугольные с привёртными планками, хотя последние легче обрабатывать. Ползун выполняется в виде балки коробчатого полуцилиндрического сечения. Для уменьшения веса и увеличения жёсткости на изгиб и кручение ползуны выполняют иногда сварными (из стальных листов) с рёбрами или литыми из лёгких сплавов. В случае реечного привода применяется ползун из стальной поковки прямоугольного сечения с нарезанными зубьями. Соединение ползуна с верхним концом кулисы производится вилкой с пазом, серьгой (фиг. 5) или шарнирным болтом через передвижную колодку с переставным винтом. При гидравлической тяге (фиг. 6) шток поршня скрепляется с ухом ползуна. Цилиндр крепится сверху станины между направляющих. В ползунах с выемкой для прохода цилиндра, ослабляющей сечение ползуна, требуются добавочные рёбра жёсткости. Для строгания шпоночных пазов у длинных валов предусматривают туннель между низом ползуна и верхом станины или специальное отверстие в станине для пропуска валов. Супортная доска на торце ползуна делается поворотной для строжки косых плоскостей. Винт супорта имеет иногда автоматическую подачу посредством храповика, дей-  [c.470]

Роликовую правильную машину выполняют в виде двух рядов роликов (рис. 137, а). Оси верхнего ряда роликов смещены по отношению к осям роликов нижнего ряда на половину шага (t/2). Образующие поверхности верхних роликов перекрывают по вертикали образующие роликов нижнего ряда. Основными параметрами листоправильных машин считают диаметр роликов, длину бочки роликов L, шаг роликов t, толщину листов, подвергаемых правке. Для сортоправильных машин наряду с высотой указывается момент сопротивления изгибу сечения проката. Диаметр роликов d правильных машин принимается в зависимости от толщины выправляемого листа. Большей толщине листов соответствуют большие  [c.294]

Как найдено теоретически и экспериментально, форма прогибов при потере устойчивости длинной узкой полосы при сдвиге образует одну полуволну в поперечном направлении и несколько полуволн той же длины в продольном направлении. В отличие-от волны простой формы в виде синусоиды в случае потери устойчивости, при сжимающих напряжениях, здесь образуются косые волны с узлами, расположенными чход углом, так что лри этом пластина изгибается с более резкими изломами в направлении сжатой диагонали, чем в направлении растянутой ди о-нали. Эта тенденция еще более усиливается в случае тонких пластин, когда прогибы становятся. большими по сравнению с толщиной растянутая диагональ становится почти прямолинейной,, а сжатая диагональ изгибается с большим числом полуволн эта форма сходна с той. Которая образуется при сдвиге руками тонкого листа бумаги или ткани. Такиа> большие прогибы при потере устойчивости будут обсуждаться в главе 5.  [c.275]

Наконец рассмотрим изгиб, растяжение и сдвиг плоског о листа, т. е. деформацию вида  [c.138]

УГОЛ ЗАГИБА — характеристика пластичности металлич. материалов (полос, листов, проволоки, прутков, труб, профилей), определяемая при про воде ими испытаний на технологические пробы - загиб (см. Испытание на изгиб), перегиб, борто-вание, двойной кровельный замок. У. з, оговаривается для каждого вида испытанш в соответствующих ГОСТах или ТУ па материал. Признаком того, что при испытаниях материал выдержал заданный У. з., является отсутствие в материале трещин, надрывов, расслоений.  [c.372]

Силовые шпангоуты воспринимают большие сосредоточенные нагрузки от прикрепленных к ним частей вертолета, грузов и агрегатов. Сосредоточенные силы могут проходить в шюскости продольного элемента или могут быть приложены под углом к данной плоскости. В последнем случае в конструкции предусматриваются продольные элементы. Можно приближенно считать, что шпангоут ие работает от сил, нормальных к его плоскости. Прочность отдельных сечений этого элемента, как правило, определяется лишь изгибом. Силовые шпангоуты выполняются либр в виде замкнутой рамы из штампованных поясов, либо в виде рамы, частично или полностью зашитой листом. Для повышения критических напряжений стейку рамы обычно подкрепляют стойками или ребрами жесткости, что необходимо в местах приложения к шпангоуту сосредоточенных сил. В этом случае ребра трансформируют сосредоточенную силу в распределенную по стенке шпангоута, улучшая условия его работы.  [c.318]

Использование другого критерия при испытании образцов Шарпи с V-образным надрезом и прочие испытания. Температура, при которой достигается соответствующий уровень энергии разрушения образцов Шарпи с V-образным надрезом из данной стали, меняется не только в определенном интервале, вьппе которого происходит переход материала от хрупкого к вязкому разрушению, но также и в зависимости от уровня энергии, связанного с вязким поведением материала. Некоторые авторы считают, что важнее знать зависимость температуры эксплуатации от интервала переходной температуры, чем значение энергии разрушения. Это приводит к использованию иного критерия, который в меньшей степени зависит от таких переменных величин, как прочность материала, направление нагружения и показатель вязкости разрушения. Таким критерием может быть угол изгиба образца до разрушения или значение энергии разрушения при определенной температуре, составляюш ее часть энергии, измеренной в образце с вязким характером разрушения. Для многих низкоуглеродистых и низколегированных сталей внешний вид излома изменяется в диапазоне переходной температуры от вязкого волокнистого и шелковистого до хрупкого кристаллического с характерным блеском. Эту особенность также используют для определения переходной температуры посредством оценки процента волокнистости или процента кристалличности. Например, в случае разрушения судов результаты испытаний и эксплуатационных разрушений сравнивали с использованием внешних видов изломов. Проведя анализ свыше 500 разрушений листов в судах, Ходсон и Бойд (1958 г.) сравнили их со значениями энергии разрушения и внешним видом изломов испытанных при температуре разрушения образцов Шарпи. Они установили, что следует принимать во внимание и энергию разрушения и внешний вид излома. Почти все листы, полностью пересеченные хрупкой трещиной, имели энергию разрушения образцов Шарпи с V-образным надрезом <С4,84кгс-м и >70% кристалличности в изломе. Так как большинство разрушений произошло в температурном интервале от О до 10° С, температуру испытания 0° С выбирали произвольно. Считается, что минимальный критерий энергии разрушения образцов Шарпи (4,84кгс-м с 30% волокон в изломе) должен служить признаком для отбраковки листов, обладающих недостаточным показателем вязкости разрушения.  [c.220]


Это значит, что в случае идеальной пластичности материала, не происходит утонения изгибаемого листа при круговом изгибе. Равенства (10-43) при o = onst принимают вид  [c.312]

Различают од осрезное или двухсрезное соединение листов. На рис. 52 113ображен продольный разрез и план односрезного соединения двух листов внахлестку при этом заклепки изгибаются 5-образно, ввиду наличия моментов РЬ, срезаются по одной плоскости. Другой вид односрезного соединения изображен на рис. 53, а. В этом соединении листы А м В расположены впритык торцами и перекрыты одной накладной, с которой листы и соединяются заклепками. Здесь также, помимо сдвига по плоскости Р = возникает изгиб  [c.89]


Смотреть страницы где упоминается термин Изгиб листов, виды : [c.199]    [c.104]    [c.160]    [c.20]    [c.129]    [c.186]    [c.43]    [c.393]    [c.400]    [c.221]   
Справочник по специальным работам (1962) -- [ c.461 ]



ПОИСК



Листов



© 2025 Mash-xxl.info Реклама на сайте