Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Композиты Особенности свойств

Среди возможных видов разрушения различают разрыв матрицы, разрыв на границе раздела между волокном и матрицей и разрыв волокон. Эти виды разрушения не являются независимыми, а могут взаимодействовать и стимулировать друг друга. Начало разрушения, очевидно, определяется внутренним напряженным состоянием, которое зависит от действующей нагрузки, геометрического строения композита и свойств его компонентов. Может оказаться, что напряженное состояние является очень сложным, и определить его аналитически чрезвычайно трудно поэтому экспериментальные исследования играют существенную роль, а иногда просто необходимы. Экспериментальные методы, применяемые для изучения механики композитов, включают метод фотоупругости, тензометрический метод, метод муара и голографию. Метод фотоупругости применим к разнообразным задачам и особенно эффективен при изучении микро-механики.  [c.493]


Устойчивость — это другое условие надежности конструкции, которое в качественном смысле означает, что дополнительная деформация требует дополнительного нагружения [9, 10]. Рост нагрузки неизбежно вызовет расширение пластической области или увеличение скорости течения, или продолжит развитие процесса разрушения. Хотя необходимо всячески добиваться подобного устойчивого поведения материала или элемента конструкции, особенности свойств композитов не позволяют во всех случаях ожидать от этих материалов и конструкций на их основе устойчивого поведения. Поведение системы, состояш,ей из различных по свойствам компонентов, может быть, а может и не быть устойчивым, когда в ней на уровне компонентов начинаются процессы разрушения. Однако при проектировании и создании искусственного композиционного материала почти всегда есть возможность выбора таких компонентов, которые обеспечат необходимую степень устойчивости механического поведения.  [c.17]

Для определения влияния внешних условий на свойства композиционных материалов используются специальные виды испытаний. Исследование зависимости свойств от экспозиции во влажной среде показывает, что на изменение характеристик материала оказывает влияние содержание связующего, ориентация волокна, геометрия образца, относительная влажность и температура. Стабильность размеров композитов также зависит от равновесных значений сорбции и десорбции влаги. Относительная влажность может воздействовать и на жесткость композитов, особенно при циклических нагрузках [2].  [c.440]

При проведении испытаний слоистых пластиков на изгиб (если образцы получены методом вакуумного прессования) необходимо учитывать, что прочность зависит от особенностей расположения верхней и нижней сторон образца [13]. Показано также, что для слоистых пластиков на основе тканей сатинового переплетения механические свойства несимметричны относительно структуры ткани [13]. При формовании композитов эти свойства необходимо учитывать.  [c.461]

Особенности моделирования композита. Сложность теоретического прогнозирования физико-механических свойств композита по свойствам составляющих его компонентов становится очевидной, если принять во внимание  [c.14]

ОСНОВНЫЕ ОСОБЕННОСТИ СВОЙСТВ КОМПОЗИТОВ  [c.189]

Все перечисленные особенности свойств относятся к композитам с волокнистой и слоистой структурой. Дополнительные трудности возникают при испытаниях пространственно-армированных композитов, у которых поперечная связь обеспечивается жестким каркасом вместо податливой матрицы.  [c.191]


Обычным является заблуждение, когда о свойствах композита судят по одному, максимум двум параметрам. Дело в том, что композитные материалы наследуют не только положительные, но и отрицательные свойства компонентов. Однако при описании конструкционных возможностей этих материалов часто принято подчеркивать только высокую удельную прочность и жесткость армированных пластиков и умалчивать об их отрицательных свойствах. Это во многом обусловлено недостаточно полным комплексом испытаний, при котором изучается только часть параметров, характеризующих материал и его поведение в конструкции, а не весь комплекс, и неправильной обработкой результатов испытаний (с привлечением аппарата, не учитывающего особенности свойств испытываемых материалов).  [c.9]

Проблемы в разработке компьютерных программ конструирования композитов связаны со сложностью их структуры, а также особенностями структуры и свойств матрицы, наполнителя и межфазного слоя. Для их преодоления необходимы теоретически обоснованные количественные соотношения между параметрами композита и его компонентами, т. е. разработка универсальной модели композиционного материала. Эта задача может быть решена в XXI веке при использовании последних достижений физики, в том числе синергетики и фрактального анализа.  [c.190]

Важным преимуществом композиционного материала является его высокая прочность на единицу массы. При этом по своим прочностным и тепловым качествам многие композиционные материалы превосходят любой из своих компонентов или резко отличаются от него. Необходимо иметь в виду, однако, что наряду со многими технически важными преимуществами композиционные материалы обладают и существенным недостатком, который связан с тем, что физико-механические и химические свойства компонентов композита зачастую оказываются совершенно несогласованными, а это иногда приводит к специфическим видам разрушения (расслоение, местные разрывы, нарушение адгезии и т. п.). При создании математической теории эти особенности порождают большие трудности, которые остаются еще в значительной мере непреодоленными.  [c.5]

В большинстве проведенных к настоящему времени работ по исследованию микромеханического поведения композитов явно или неявно предполагается, что компоненты композиционного материала являются линейно упругими. Однако при приложении нагрузки многие из этих материалов, в особенности материалы, которые обычно используются для изготовления матрицы, не сохраняют своих линейных свойств. Для некоторых материалов эта нелинейность может быть хотя бы частично обусловлена вязкоупругостью — временными эффектами, которые обсуждались в гл. 4. С другой стороны, как только приложенная нагрузка превосходит определенное значение, равное пределу текучести материала, для большинства материалов обнаруживается нелинейность, не зависящая от временных факторов. Этот последний тип нелинейности, проявляемый вне упругой области, называется пластичностью. Таким образом, термин упругопластическое поведение обычно означает, что рассматривается процесс нагружения в целом.  [c.197]

Композиционные материалы, особенно волокнистые композиты, обладающие уникальными свойствами высокой прочности и низкой плотности, а также хорошими усталостными свойствами, могут применяться в конструкциях любого назначения. Механика композитов изучает их механическое поведение под  [c.492]

Большое внимание уделяется исследованию композитов с короткими волокнами, особенно систем с нитевидными кристаллами. Считается, что эти системы позволят использовать чрезвычайно высокую жесткость, присущую лишь нитевидным кристаллам, при одновременном повышении вязкости композита. Возможность реализации потенциально высоких свойств таких композитов определяется, очевидно, поверхностью раздела.  [c.60]

В отличие от механических свойств, установленных для Широкого круга композитов с металлической матрицей, характеристики микроструктуры, и особенно области раздела фаз, исследо-  [c.263]

Попытки установить корреляцию между эксплуатационными характеристиками армированных пластиков и основными положениями химии поверхностных явлений оказались безуспешными. Адгезия красок, каучуков и герметиков к поверхности минеральных веществ и прочность стеклопластиков (особенно после выдержки в воде) очень слабо зависят от контактных углов смачивания, поверхностного натяжения адгезива, наличия непрочных пограничных слоев, морфологии и химии поверхности минеральных наполнителей и других важных факторов. Вполне вероятно, что при оценке адгезионных свойств по механическим характеристикам композитов могут использоваться отдельные параметры или их сочетания, которые оказываются несущественными при рассмотрении адгезии полимерных цепей на молекулярном уровне.  [c.182]


После описания некоторых временных свойств составляюш их материалов самое время исследовать временные свойства и самих композитов. В отличие от некоторых механических свойств волокнистых композитов, которые могут быть определены по правилу смесей , определение длительной прочности вообще гораздо сложнее. В особенности это проявляется, если рассматривать хрупкие волокна, которые в окружении вязкоупругой матрицы обладают различными значениями прочности. Такая комбинация волокно — матрица может привести к замедленному разрушению композита под напряжением, даже если он однонаправленный и нагрузка прикладывается в направлении волокна.  [c.285]

В следующем разделе выясняются две основные особенности усталостной прочности композитов, а именно (а) что усталостная прочность является свойством самого композита в противоположность тем свойствам, которые определяются характеристиками каждого из компонентов, и (б) что некоторые особенности конструкции материала можно использовать для максимального увеличения усталостной прочности волокнистых композитов.  [c.402]

Со времени появления в начале шестидесятых годов так называемых современных типов композитов связанные с этими материалами области науки и техники значительно расширились. Это объясняется в основном стремлением применить новые высокопрочные и высокомодульные, но легкие материалы в конструкциях летательных аппаратов. Надо сказать, что методы исследования и предсказания упругих свойств современных композитов достаточно хорошо изучены, однако при оценке неупругого поведения этих материалов инженеры столкнулись с некоторыми весьма сложными проблемами. При этом особенно трудным оказалось предсказание разрушения конструкций из композита.  [c.7]

После почти десятилетнего периода поисков и исследований современные композитные материалы получили широкое распространение во многих отраслях современной техники — от космической до производства изделий массового потребления. Высокие удельные характеристики жесткости и прочности и особенности технологии переработки, позволяющие создавать материалы с заданной ориентацией свойств, выдвинули композиты на первый план среди современных конструкционных материалов. Естественно, в связи с развитием и внедрением новых конструкционных материалов возникла необходимость научиться оценивать их прочностные свойства при различных видах нагружения. Не менее важно знать, как технологические (поверхностные дефекты, нарушения адгезионной связи между слоями) и конструкционные (болтовые, заклепочные, клеевые соединения, закладные детали из других материалов) несовершенства изменяют механизм разрушения композитов. В то же время многочисленные попытки анализа и интерпретации имеющихся экспериментальных данных пока еще не привели к исчерпывающему пониманию явления разрушения в композитах.  [c.34]

Дополнительные проблемы при оценке предельных свойств композитов появляются в связи с такими особенностями этих материалов, как неупругость поведения компонент, анизотропия армирующих волокон, разброс прочности компонент, наличие третьей фазы в виде пограничного слоя матрицы вблизи поверхности волокна. Следует учитывать также и специфику их применения — в авиационных конструкциях требуется нечувствительность к локальным разрушениям, в судостроении — стойкость к коррозии и кавитации, в возвращаемых космических кораблях—сопротивление абляции и уносу массы.  [c.38]

Усталость — это полная потеря свойств (или разрушение) элемента конструкции, наступившая после действия на него переменной нагрузки, максимальная амплитуда которой по величине меньше статической, монотонно прикладываемой нагрузки, вызывающей разрушение этого элемента. Процесс разрушения и усталости металлов зависит от состава, особенностей металлургического процесса, геометрии образца (элемента конструкции), вида нагрузки, времени и условий внешней среды. Для композитов число влияющих параметров необходимо увеличить по крайней мере вдвое из-за наличия в материале двух фаз. Более того, необходимо также учесть и влияние поверхности раздела, что приведет к еще большему усложнению задачи. Конечно, ни одна приемлемая модель для предсказания процесса разрушения не мол<ет одновременно включить все вышеупомянутые параметры. Действительно, невозможно себе представить систему черного ящика , у которого на входе — весь комплекс переменных параметров, а на выходе — только скорость роста разрушения и время достижения предельного состояния. Поэтому не существует единого подхода для определения усталостного разрушения для металлов (которые по крайней мере при макроскопическом подходе рассматриваются как однородные). Для композитов проблема тем более усложняется вследствие присущей им неоднородности. Усталости композитов посвящены многочисленные работы. Достижения и современные тенденции в этой области обобщены в работах [49, 50].  [c.84]

Следует подчеркнуть, что разобранные примеры далеки от действительности, поскольку в них заложены гипотетические свойства материала. Их назначение — показать, что при помощи предложенной модели можно предсказывать особенности усталостного поведения композитов с надрезами.  [c.95]

Расчет остаточных напряжений в композитах, состоящих из полимерного связующего и армирующих волокон, является, по существу, задачей вязкоупругого анализа конструкций под действием переменной температуры, когда полимерное связующее переходит из высокоэластического состояния в стеклообразное. Этот расчет легко выполним при помощи существующих методов в предположении о термореологической простоте и линейности свойств полимерного связующего. Однако справедливость развитого подхода все-таки нуждается в проверке, особенно в диапазоне температур, близких к Tg.  [c.217]

Квазиоднородный подход, не обеспечивая глубокого понимания поведения композита, не позволяет учесть ряд его особенностей. Например, композиты могут проявлять свойство ползучести при отсутствии каких-либо нагрузок в направлении армирования. Коэффициенты термического расширения композитов зависят в ряде случаев от времени и температуры, хотя составляющие их компоненты такими свойствами и не обладают [12]. Подобное явление связано с релаксацией термических напряжений в полимерной матрице.  [c.250]


Все эти материалы необходимы для электронной промышленности, машиностроения, приборостроения и других отраслей народного хозянсгва. Уникальные свойства полученных в невесомости композитов, особенно их высочайшая однородность, полное отсутствие внутренних дефектов (пузырьков внутри металлов) и другие положительные характеристики, которые невозможно или чрезвычайно трудно обеспечить на Земле, свидетельствуют о большом, не поддающемся предвидению, будущем космической технологии.  [c.97]

Технологический процесс производства Сандвичевых структур (сотовых конструкций) требует соблюдения трех обязательных условий использования давления использования температуры (необходимо учесть, что и давление, и температура должны быть в точно заданных регламентами пределах в течение всего времени отверждения адгезивов) обеспечение инструментом и оборудованием, которое будет совмещать детали и выдерживать их под нагрузкой в течение всего режима отверждения. Существует много технологических приемов обеспечения условий отверждения Сандвичевых структур от формования в вакуумных мешках до автоклавного прессования. В основном все оборудование для производства Сандвичевых структур аналогично оборудованию для производства армированных пластиков, так как сандвичевые структуры являются одним из видов таких композитов. Однако давление при производстве Сандвичевых структур почти всегда ниже, что связано с особенностью свойств заполнителя. Стоимость оборудования в этом случае может быть несколько более низкой. Кроме того, низкие максимальные давления при соединении элементов Сандвичевых структур приемлемы и для ряда других композиционных материалов.  [c.377]

Указанная особенность теории фракталов обусловливает необходимость развития подхода, основанного на ее синтезе как теории, обеспечивающей эффективное описание структур, и одной из классических теорий прочности, для описания их прочностных свойств. Использование для этих целей структурных теорий [62, 190], в которых исходят из предположений, что прочность дисперсной структуры ед — дитивно складывается из прочности отдельных контактов, не совсем корректно для структур, наблюдающихся у пористых случайно —неоднородных композитов, особенно в области, близкой к максимуму плотности.  [c.198]

Имита1щя гексагональной и тетрагональной укладки волокон. При разработке плоской структурной модели композиционного материала предполагалось, что волокна уложены гексагонально в поперечном сечении материала таким образом, что каждое волокно окружено шестью соседними, Но в ряде случаев определенный интерес представляет анализ влияния вида укладки волокон на прочностные свойства композитов. Особенность тетрагональной (или квадратной) укладки состоит в том, что каждое волокно окружено не шестью, а восемью волокнами, при этом четыре из них расположены ближе, а четыре удалены. Это обстоятельство учитывается при реализации алгоритмов перераспределения напряжений. Коэффициенты передачи нагрузки при квадратной укладке получались пересчетом из коэффициентов для гексагональной укладки. Как и при моделировании неравномерной укладки волокон, предполагалось, что коэффициенты передачи нагрузки изменяются обратно пропорционально расстоянию между волокнами. Вычислялись два коэффициента отах т1п соответствующие перегрузке ближайших и удаленных волокон (рис. 84)  [c.171]

Особенности свойств трехмерно-армированных (ЗД) углерод-углеродных композитов. О преимуществах и недостатках углерод-углеродных материалов ЗД по сравнению с обычными традиционными полимерными материалами аналогичной структуры можно судить по данным табл. 9.18. Эти данные получены на пространственно армированных материалах, каркас которых был создан системой трех вза имно ортогональных волокон [10]. В качестве арматуры для их изготовления использовали жгуты углеродны волокон с модулем упругости 2Х X 10 МПа и прочностью 3-10 МПг. Материалы, изготовленные на основе  [c.292]

Механические свойства композиционных материалов и их составных частей меняются под влиянием окружающей среды и химического старения, особенно при изменении температуры н под действием воды (водяных паров) на полимерные композиты (см., например, Фрид [33], Стил [111], Цай [118]). Такие эффекты часто необратимы и приводят к изменению свойств материала со временем. Мы интересуемся здесь только способом, которым можно учесть эти влияния в определяющих уравнениях вязко-упругого материала. Детальное обсуждение физического и химического механизмов, приводящих к подобным изменениям, а также математическое их описание остаются вне рамок настоящей главы.  [c.129]

Из-за ограничений типа нерастяжимости и несл<имаемости краевые задачи для идеальных волокнистых композитов ставятся иначе, чем при отсутствии ограничений, а их решения обладают некоторыми необычными свойствами. Для того чтобы исследовать эти свойства в возможно более простом случае, в настоящем разделе мы рассматриваем бесконечно малые плоские деформации материалов, армированных первоначально прямолинейными параллельными волокнами. Помимо всего прочего, оказывается, что поле напряжений в идеальном волокнистом материале может иметь особенности типа дельта-функции Дирака, соответствующие приложенным к отдельным волокнам  [c.291]

Кроме этого, к настоящему времени предложено большое количество самых разнообразных конфигураций образцов для испытаний на сдвиг и двухосное напряженное состояние в виде, например, рам, а также двутавровых и крестовидных профилей. Многие из этих конфигураций геометрически сложны, распределение напряжений в них неоднородно, причем вычисление на-пряжени й может оказаться весьма трудоемким они имеют определенные преимущества при исследовании жесткостных характеристик, но менее пригодны для изучения прочностных свойств. Некоторые из возникающих здесь трудностей были рассмотрены в работе Унтни с соавторами [52]. При исследовании слоистых композитов возникают дополнительные сложности, связанные с особенностями на свободных краях образца эти вопросы обсуждаются в работах Пагано и Пайпса [36], а также Уитни и Браунинга [51].  [c.462]

Роль поверхности раздела в структурной целостности композита становится особенно очевидной, если принять во внимание тот факт, что в композите объемом 16,4 ом , содержащем 50 об. % волокна диаметром 7,6 мкм, площадь поверхности раздела примерноравна 41936 см . Результаты исследований влияния поверхности раздела- на свойства композитов представлены в работах [7, 11, 15, 38, 43, 54, 57, 60].  [c.43]

На механических свойствах полимерных композитов с минеральными наполнителями особенно отрицательно сказывается скопление воды на поверхности раздела. Вода может выщелачивать растворимые вещества с поверхности раздела, что вызывает коррозию наполнителя под напряжением или растрескивание смолы из-за осмотического давления при этом смола работает как диэлектрик при электрохимической коррозии металлов. Полярные функциональные группы полимеров (аминные гидроксильные или карбоксильные) наиболее прочно связываются с поверхностью наполнителя и эффективно препятствуют скоплению молекул воды на поверхности раздела. Полиолефины и другие неполярные полимеры почти не способны конкурировать с водой на поверхности наполнителя, хотя в массе эти полимеры наиболее стойки к растворению или химическому взаимодействию с водой. Роль силановых аппретов заключается не в том, что они препятствуют достижению молекулами воды границы раздела полимер — наполнитель, а в том, что они, распределяясь на поверхности наполнителя, мешают молекулам воды образовывать пленки или капли. Такое представление об адгезии полимера к наполнителю предполагает, что ухудшение адгезии всегда предшествует коррозии. Любая полимерная пленка, имеющая адгезию к минеральному наполнителю и препятствующая скоплению воды на поверхности раздела, предотвращает коррозию поверхности минерального наполнителя под действием воды.  [c.210]


В работе [16] исследована длительная прочность двух материалов с никелевыми матрицами, армированных вольфрамовой проволокой, содержаш,ей менее 0,01 % включений (в основном, двуокиси кремния) и занимающей примерно 40% объема. Материалы матрицы — Нимокаст 258 и ЕРВ 16. В работе обнаружено, что добавка тонкой вольфрамовой прово.чоки (0,01 дюйм диаметром) оказывает малое или вообще не оказывает усиливающего действия на матрицу, исключение представляет случай, когда температура превьппала 900 °С. Интересно отметить, что модули Юнга волокна и матрицы при комнатной температуре в этом случае очень близки (55-10 фунт/дюйм для волокна и 30 X X 10 фунт/дюйм для матрицы). При высоких температурах испытания 1000 и 1100 С прочностные свойства вольфрамовой проволоки улучшаются, в особенности прочность при разрушении. На рис. 23 представлена зависимость 100-часовой прочности от температуры. В этой же работе [16] приведены и другие испытания, предпринятые для того, чтобы выяснить, как влияет степень армирования на длительную прочность, но полученные результаты, вероятно, недостаточны для каких-либо выводов. Другая часть работы [16] состоит в исследовании влияния диаметра волокна на прочность композитов. Здесь, кажется, существует противоречие между свойствами при кратковременном растяжении и длительных нагружениях при высоких температурах. Для кратковременного нагружения чем тоньше проволока, тем она прочнее, а при продолжительном нагружении и повышенных температурах тонкие вольфрамовые проволоки теряют свои качества быстрее, чем толстые, вероятно, из-за рекристаллизации в поверхностных слоях и реакции между волокном и матрицей.  [c.301]

Следует отметить, что высокий модуль углеродных волокон обусловлен преиму1цественной ориентацией графитовой структуры, возникающей при деградации исходного полимера. Из-за такой структуры свойства волокон являются сильно анизотропными. Особенно важна анизотропия прочности, модуля и коэффициентов температурного расширения, и она отражается в свойствах композитов, которые оказываются более анизотропными, чем аналогичные композиты на основе стеклянных волокон. Для данного типа волокна прочность и модуль композита при осевом растяжении зависят в первую очередь от объемной доли волокон и лишь в незначительной степени от состава используемой  [c.365]

Сравнение рис. 12, а и 12, б показывает, как важны механические свойства матрицы для того, каким будет вид роста трещины и усталостная прочность композита. Матрица из высокопрочного алюминиевого сплава 6061-МТ6 ) фактически не давала трещинам разветвляться, что привело к сокращению усталостной долговечности по величине почти на порядок. Этот результат можно качественно объяснить, используя понятие относительных упругих модулей компонентов, и для того, чтобы учесть пластическое поведение, мы рассматриваем эффективные модули. Так, алюминий 1235 течет при низком уровне напряжений, отношение эффективных модулей волокна и матрицы увеличивается, что способствует ветвлению трещин. Пластическое течение в матрице с низким пределом текучести также затупляет конец трепцнны и сводит к минимуму напряжения около него. С другой стороны, напряжения у конца трещины в алюминиевом сплаве 6061-МТ6 высоки, отношение эффективных модулей более низкое и ветвление трещин минимально. Более того, вязкие волокна являются особенно чувствительными к высоким напряжениям вблизи конца трепщны, и поэтому рост усталостных трещин будет быстрым.  [c.420]

Общая особенность изучения механических свойств композитов состоит в том, что композит обычно рассматривают как макроод-нородное тело, поведение одной части которого не отличается существенно от поведения любой другой. Однако, когда композит подвержен напряжениям, приближающимся к пределу прочности или достигающим его, возникает другая ситуация. Вплоть до этого предела композит остается в состоянии устойчивого равновесия в том смысле, что ни у какой отдельной части материала не возникает тенденции к дополнительному деформированию. Но при потере прочности любая область, деформирован-  [c.440]

При использовании полимерных композиционных материалов в ответственных конструкциях приходится сталкиваться с необходимостью учета неупругих свойств, особенно в задачах о прогнозировании разрушения. Сравнительно недавно на специальном заседании Американского общества инженеров-механиков (ASME), Хьюстон, США, ноябрь 1975 г., была предпринята попытка дать обзор полученных результатов, указать области дальнейших исследований неупругих свойств композитов и методы их учета при решении конкретных задач. Семь обзорных докладов известных американских специалистов по механике композитов и составили единый по тематике сборник, перевод которого предлагается советскому читателю.  [c.5]

Анизотропия композита является следствием особенностей геометрии и особенностей термомеханических, деформативных и прочностных свойств компонент. Поэтому композит может иметь ряд плоскостей, в которых его свойства весьма низки и определяются в значительной степени микроструктурой. Местное разрушение происходит, как правило, по этим плоскостям. В ряде случаев такое разрушение смягчает концентрацию и уменьшает вероятность распространения трещины ), ведущей к разрушению. С другой стороны, появление ограниченных областей разрушения при низких уровнях напряжений не позволяет дать строгое определение тому, что же считать разрушением композита в целом. Поэтому анализировать разрушение композитов необходимо параллельно с позиций макро- и микромеханики. При использовании феноменологического подхода разрушение определяется по изменению макроповедения конструкции, проявляющемуся в виде потерн устойчивости или исчерпания прочности. В микроподходе разрушением считают нарушение поверхности раздела волокно — матрица. Состояние разрушения наступает, когда около одного или группы микродефектов напряжения в волокне или матрице превышают соответствующие предельные значения.  [c.37]


Смотреть страницы где упоминается термин Композиты Особенности свойств : [c.267]    [c.120]    [c.687]    [c.402]    [c.141]    [c.194]    [c.366]    [c.38]    [c.52]    [c.219]   
Композиционные материалы (1990) -- [ c.189 , c.191 ]



ПОИСК



Композит

Основные особенности свойств композитов



© 2025 Mash-xxl.info Реклама на сайте