Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Усталостные разрушения Фактор масштабный

При расчете детали на усталостную прочность наряду с фактором состояния поверхности необходимо учитывать также еще так называемый масштабный фактор. Опыты, проведенные по определению предела усталости для образцов различных размеров, показали, что с увеличением последних предел усталости уменьшается. Объясняется это тем, что максимальные напряжения в детали не характеризуют полностью всего процесса усталостного разрушения. От величины  [c.404]


Приведены сведения о коррозии и коррозионно-усталостном разрушении металлов. Дан анализ современных методов и средств изучения коррозионной усталости. Рассмотрено влияние на коррозионную выносливость металлов структуры сплавов, агрессивности среды, масштабного фактора, частоты приложения механической. нагрузки и др. Приведены закономерности коррозионно-усталостного разрушения сталей, подвергнутых упрочняющим поверхностным обработкам. Изложены вопросы электрической защиты металлов от коррозионно-усталостного разрушения.  [c.62]

Следует отметить, что на другие виды разрушения материалов в разной степени влияют масштабный фактор и конструкция детали. Так, при оценке коррозионной стойкости материала результаты, полученные для образца, при сохранении внешних условий могут быть, как правило, использованы для различных деталей. Однако, если испытывается усталостная или коррозионно-усталостная прочность материала, то форма и размеры образцов (которые стандартизованы) оказывают существенное влияние на процесс разрушения, поскольку не только вид нагружения, но и конструкция детали и технология ее обработки (шероховатость поверхности) определяют напряженное состояние и выносливость материала. Как известно, для усталостного разрушения разработаны методы пересчета на другой цикл нагружения, а также методы оценки концентрации напряжения и масштабного фактора. Это позволяет более широко использовать результаты испытания образцов для определения усталостной долговечности деталей различных конструктивных форм. В общем случае можно сказать, что применяемая схема испытания стойкости материала отражает уровень познания физики данного процесса. Чем глубже наши знания в раскрытии закономерностей процесса, тем больше методы испытания стойкости материалов абстрагируются от конструктивных форм изделий и отражают свойства и характеристики самих материалов.  [c.487]

В заключение необходимо отметить, что инверсия масштабного фактора при коррозионной усталости характерна для углеродистых, низко-и среднелегированных мартенситных нержавеющих сталей, алюминиевых сплавов. Наиболее заметна она при изменении диаметра образца до 50—60 мм (рис. 69) и проявляется при большой базе испытаний, когда коррозионно-усталостное разрушение контролируется электрохимическим фактором. У нержавеющих сталей, склонных к щелевой коррозии, с увеличением диаметра образцов предел выносливости снижается и при испытании и в воздухе, и в коррозионной среде.  [c.136]


Использование полученного уравнения кривой усталости дало возможность построить распределение предела усталости на базе 10 циклов для образцов диаметром 10, 20 и 32 мм и при меньшем количестве образцов в серии (рис. 68). Анализ полученных результатов показывает, что для образцов разных диаметров, испытанных как на воздухе, так и в коррозионной среде, пределы усталости, соответствующие малой вероятности разрушения (р = 2%), отличаются не существенно, т. е. нижняя граница рассеивания пределов выносливости сплава практически постоянна. С увеличением вероятности разрушения влияние масштабного фактора на усталостную прочность увеличивается, наблюдается обычный ход масштабных кривых — затухание масштабного эффекта с ростом диаметра образцов (см. рис. 67). В этом можно видеть статистическую природу масштабного эффекта [97]. Характерным для титана является отсутствие инверсии масштабного эффекта в коррозионной среде, что очень важно для возможности прогнозирования масштабного. эффекта не только на воздухе, но и в коррозионной среде по результатам большой выборки испытания малых образцов и определения нижнего предела распределения выносливости. Этот предел и будет устойчивым для данного металла независимо от размера изделия.  [c.141]

В табл. 16 приведены значения коэффициента упрочнения Кв в зависимости от эффективного коэффициента концентраций напряжений Кв и метода поверхностного упрочнения. Чем больше Ко, тем эффективнее процесс поверхностного упрочнения. После поверхностной обработки очаг усталостного разрушения смещается под упрочненный слой, поэтому на величину влияет прочность сердцевины (см. табл. 16). Чем больше Кв, тем эффективнее поверхностное упрочнение. С увеличением сечения изделия (масштабный фактор Кйа) коэффициент упрочнения Ко после поверхностной закалки, химико-термической обработки и ППД уменьшается. При оптимальных режимах упрочнения (а < 3) для предварительных расчетов Ко может быть определен по формуле  [c.319]

В книге описано современное состояние вопроса о сопротивлении усталости сварных конструкций в машиностроении. Освещены особенности усталостных разрушений сварных конструкций в связи с масштабным фактором, остаточной напряженностью, способом сварки, характером нагружения и конструктивными формами. Приведен экспериментальный материал по усталости стыковых, нахлесточных, тавровых, штуцерных, трубных соединений, несущих элемеитов балочного и рамного типов, а также по влиянию наплавок из аустенитных сталей и цветных металлов на сопротивление усталости крупных стальных валов. Значительная часть книги отображает результаты экспериментальных работ, выполненных под руководством авторов или при их участии.  [c.2]

Статистическая теория подобия усталостного разрушения в изложенной далее форме дает описание влияния концентрации напряжений, масштабного фактора, формы поперечного сечения и вида нагружения на характеристики сопротивления усталости, определяемые по условию появления первой макроскопической трещины усталости. Характеристики прочности на стадии развития усталостной трещины и окончательного разрушения описываются методами механики разрушения (см. разд. 2).  [c.59]

Более точный метод учета одновременного влияния концентрации напряжений, масштабного фактора, формы поперечного сечения и вида нагружения на сопротивление усталости вытекает из статистической теории подобия усталостного разрушения, изложенной ниже.  [c.145]

Для валов и осей со ступенчатым переходом от одного сечения к другому по галтели отношения К и IKd- , характеризующие влияние концентрации напряжений и масштабного фактора, в соответствии со статистической теорией подобия усталостного разрушения  [c.95]


Сложность прогнозирования поведения металлических материалов при циклическом нагружении обусловлена его зависимостью от многих факторов. Это связано с тем, что процесс зарождения и распространения усталостной трещины локален. При этом определяющими являются высокие локальные напряжения в объемах металла, соизмеримых с размерами его структурных составляющих, обусловленные уровнем внешних нагрузок, цикличностью нагружения, состоянием поверхностного слоя, концентрацией напряжений, масштабным фактором и рядом других факторов. Это приводит к тому, что определяющими при усталостном разрушении являются не осредненные характеристики сопротивления деформированию и разрушению, определяемые при статическом нагружении на образцах достаточно больших размеров, а локальные характеристики и их сочетания, которые трудно поддаются исследованию и количественному определению. Без учета основных факторов, влияющих на циклическую прочность металлических материалов, нельзя получить достоверные характеристики сопротивления усталостному разрушению деталей машин [1].  [c.208]

Для количественного решения задачи об усталостном разрушении Н. Н, Афанасьев использует статистические законы и положения теории вероятности, исхо дя из которых наиболее правдоподобно объясняются влияние масштабного фактора на выносливость ( 93, пункт б ) и другие закономерности.  [c.409]

Влияние абсолютных размеров детали (масштабного фактора). Экспериментально установлено, что с увеличением абсолютных размеров деталей их усталостная прочность снижается (масштабный эффект). Это объясняется статистической теорией разрушения, в соответствии с которой при увеличении абсолютных размеров возра  [c.601]

Влияние масштабного фактора при коррозионной усталости часто обратно обычному, т. е. образцы большего сечения оказываются более прочными, чем, образцы меньшего сечения. Это объясняется тем, что с ростом поперечного сечения удлиняется путь коррозионно-усталостного разрушения. Такой положительный масштабный эффект наблюдается не всегда, а только при достаточном числе циклов у материалов, чувствительных к коррозии в данных условиях. Чем чувствительнее материал к коррозии и чем агрессивнее среда, тем раньше пересекаются кривые для больших и малых образцов (рис. 21.12).  [c.193]

Влияние масштабного фактора также связывают качеством поверхности. При увеличении размеров об разца (детали) растет вероятность наличия на его по верхности опасного концентратора напряжения, который вызовет преждевременное усталостное разрушение.  [c.299]

Масштабный фактор. Сопротивление усталостному разрушению зависит от абсолютных размеров деталей и уменьшается с увеличением размеров. Это явление называется масштабным фактором или масштабным эффектом. Оно объясняется вероятностной природой усталостного разрушения и поэтому может быть удовлетворительно описано лишь в рамках статистической теории усталостного разрушения (см. ниже).  [c.153]

Физическая природа чувствительности детали к местным напряжениям и масштабному фактору одна и та же — неоднородность строения металла. Это явилось основой для создания статистической теории подобия усталостного разрушения [2, 3], которая описывает совместное влияние концентрации напряжений, масштабного фактора, формы поперечного сечения и вида нагружения на величину предела вьшосливости детали. Согласно этой теории, предел вьшосливости детали зависит не только от величины наибольшего местного напряжения, но и от градиента местных напряжений С, т. е. от скорости убывания местных напряжений по мере удаления от источника концентрации  [c.350]

Масштабный фактор (или иначе называемый масштабный эффект) тесно связан с физической природой прочности и разрушения твердых тел. Механические свойства сплава, особенно при знакопеременных или повторяющихся нагружениях, зависят от абсолютных размеров испытываемых образцов и конструкций даже в случае полного соблюдения подобия их геометрической формы и условий испытания [48, 61, 88, 144]. Предел выносливости гладких образцов понижается с увеличением их размеров, что оценивается коэффициентом влияния абсолютных размеров сечения. Для материалов с неоднородной структурой (литые стали, чугуны) влияние размеров образца на выносливость более резко выражено, чем для металлов с однородной структурой. Наиболее значительно снижается усталостная прочность с ростом размеров образца [48, 88] в случае неоднородного распределения напряжений по сечению образца (при изгибе). Форма поперечного сечения образца, определяющая объем металла, находящегося под действием максимальных напряжений, существенно влияет на выносливость образца. При плоском изгибе влияние на предел выносливости размеров прямоугольных образцов больше, чем цилиндрических. При однородном распределении напряжений по сечению гладких образцов (переменное растяжение — сжатие) масштабный эффект практически не проявляется. Характерно, что при наличии концентраторов напряжения масштабный эффект наблюдается при всех, без исключения, видах напряженного состояния. Чем более прочна сталь, тем сильнее проявляется масштабный эффект.  [c.21]


Долгое время считалось, что для статических нагрузок и многих других случаев нагружения справедлив закон подобия. Однако, в особенности для усталостного и хрупкого разрушения, влияние абсолютных размеров тела на его поведение под нагрузкой (понижение долговечности и прочности) стало обнаруживаться настолько часто и сильно, что привело к необходимости учета масштабного фактора (или эффекта) при проектировании, расчетах и механических испытаниях образцов и элементов конструкций.  [c.312]

В связи со сказанным все большее внимание уделяется изучению влияния надрезов на свойства металлов и сплавов, замедленному хрупкому разрушению, вязкости разрушения, испытаниям на усталостную прочность, коррозионному растрескиванию, влиянию масштабного фактора на свойства металлов и сплавов. Для оценки работоспособности металлов и сплавов при повышенны.к температурах необходимо оценить длительную прочность. Некоторые из этих вопросов и рассматриваются в настоящем разделе.  [c.168]

Учебное пособие написано в рамках чтения лекций в МГТУ им. Н.Э. Баумана по курсу Конструкционная прочность машиностроительных материалов на факультете Машиностроительные технологии (кафедра Материаловедение ) и предназначено для студентов, обучающихся на материаловедов и машиностроителей. Среди механических свойств конструкционных металлических материалов усталостные характеристики занимают очень важное место. Известно, что долговечность и надежность машин во многом определяется их сопротивлением усталости, так как в подавляющем большинстве случаев для деталей машин основным видом нагружения являются динамические, повторные и знакопеременные на1 рузки, а основной вид разрушения - усталостный. В последние годы на стыке материаловедения, физики и механики разрушения сделаны большие успехи в области изучения физической природы и микромеханизмов зарождения усталостных трещин, а также закономерностей их распространения. Сложность оценки циклической прочности конструкционных материалов связана с тем, что на усталостное разрушение оказывают влияние различные факторы (структура, состояние поверхностного слоя, температура и среда испытания, частота нагружения, концентрация напряжений, асимметрия цикла, масштабный фактор и ряд других). Все это сильно затрудняет создание общей теории усталостного разрушения металлических материалов. Однако в общем случае процесс устаттости связан с постепенным накоплением и взаимодействием дефектов кри-сталтгической решетки (вакансий, междоузельных атомов, дислокаций и дискли-наций, двойников, 1 раниц блоков и зерен и т.п.) и, как следствие этого, с развитием усталостных повреждений в виде образования и распространения микро - и макроскопических трещин. Поэтому явлению усталостного разрушения присуща периодичность и стадийность процесса, характеризующаяся вполне определенными структурными и фазовыми изменениями. Такой анализ накопления струк-туршз1х повреждений позволяет отвлечься от перечисленных выше факторов. В учебном пособии кратко на современном уровне рассмотрены основные аспекты и характеристики усталостного разрушения металлических материалов.  [c.4]

Испытания проводят на машинах, предназначенных для определения сопротивления усталости указанных объектов в воздухе. Машины снабжены специальными устройствами для подвода коррозионной среды и управления ее взаимодействием с деформируемым металлом (изменение концентрации кислорода и температуры, введение ингибиторов или депассиваторов, катодная или анодная поляризация образцов и др.). Поскольку конструкции большинства серийно выпускаемых промышленностью машин, принципы их работы, технические характеристики широко освещены в литературе, мы рассмотрим здесь лишь комплекс оборудования для изучения влияния масштабного, частотного и некоторых других факторов на сопротивление усталости металлов, разработанного в ФМИ им. Г.В.Карпенко АН УССР [79—82] и нашедшего применение во многих лабораториях научно-исследовательских организаций, вузов и промышленных предприятий. Так, для изучения влияния размеров образцов на их сопротивление усталостному разрушению примерно в иден-  [c.22]

В результате испытания образцов из среднеуглеродистой стали диаметром 7 и 60 мм было установлено, что инверсия масштабного фактора в 3 %-ном растворе Na I имеет место при сравнительно большой базе испытаний, т.е. когда разрушение контролируется электрохимическим фактором. При высоких уровнях напряжений, когда усталостное разрушение зависит от механического фактора, влияние размеров образцов на Их выносливость в коррозионной среде может быть такое же, как и в воздухе.  [c.133]

Обнаружена также тенденция к повышению чувствительности к масштабному фактору с ростом частоты нагружения. Проявление масштабного фактора в 3Ha4ntenbHoii мере зависит не только от частоты, но и от базы испытаний (рис. 75). При больших базах испытаний частотный фактор не оказывается на уровне сопротивления коррозионно-усталостному разрушению, поэтому рекомендуется за минимальнуб базу испытаний в коррозионной среде принимать 200-300 ч.  [c.145]

Надо считать, что усталостное разрушение начинается с образования пороков или дислокаций того или иного типа,которые распределяются в материале случайным образом. Влияние масштабного фактора связано с наличием градиента напряжения на заданном расстоянии от точки с наибольшим напряжением образование трещинообразного порока вызывается меньшим напряжением, когда концентратор мал. Если гладкий образец подвергается осевой нагрузке, то согласно предположению влияние масштабного фактора будет зависеть от объема  [c.123]

Вырывы материала, налипание и структурные преобразования, образуюш,ие геометрические и структурные концентраторы напряжения, — таковы в обш,ем причины падения циклической прочности при изнашивании при заедании. К ним следует добавить значительные напряжения, вызванные местными тепловыми импульсами. Отличительной особенностью механизма усталостного разрушения сталей при наличии очагов схватывания является, как и следовало ожидать, зарождение и развитие усталостных трещин на нескольких участках поверхности образца. Что касается масштабного фактора, то опыты Г. И. Вальчука показали, что число циклов до разрушения поврежденного схватыванием образца с увеличением диаметра возрастает при постоянной частоте нагружения.  [c.255]

Во-вторых, с ростом абсолютных размеров поперечного сечения уменьшается среднее значение сг ах. но одновременно уменьшается и среднее квадратическое отклонение этой величины т. е. функция распределения а ах на нормальной вероятностной бумаге будет изображаться прямой линией, проходяш,ей с большим наклоном к оси абсцисс у больших образцов по сравнению с малыми. При нормальном распределении величин 0 ах получается пересечение соответствующих линий на нормальной вероятностной бумаге при достаточно малых вероятностях разрушения, что противоречит представлениям о влиянии масштабного фактора. Поэтому при анализе закономерностей подобия усталостного разрушения целесообразно пользоваться нормальным распределением величины X = Ig (сГп,ах — и), которому не свойственны указанные особенности. Однако указанные соображения против использования нормального распределения Ощах несу-ш ественны. С другой стороны, это распределение весьма удобно при практических расчетах на прочность. Поэтому в дальнейшем с целью упрощения расчетов нормальное распределение величины X = Ig (а ,ах — м) будет аппроксимировано нормальным распределением величины Ojnax-  [c.73]


ВИДЫ оружия анализируют лишь номинально, причем особое значение придают использованию опытных коэффициентов безопасности, а также проведению испытаний прототипа на выносливость. При проектировании других видов оружия проводят детальный расчет на основе теоретических и экспериментальных данных, чтобы получить совершенную конструкцию прототипа для испытания ее на выносливость. Руководяш,ие материалы по усталостной прочности отражают обилий уровень знаний в области усталостного разрушения. В настоящее время еш е остаются вопросы теоретические и феноменологические, для решения которых недостаточно знаний, например, о влиянии на усталость материала таких факторов, как поле напряжений, остаточные напряжения, масштабный фактор, обработка и состояние поверхности, а также качество материала. Последний обзор теоретических положений и методов, относяш ихся к накапливаемому повреждению (Хардат,  [c.319]

Филлипс С., Хейвуд Р. Масштабный фактор при усталостных разрушениях гладких образцов и образцов с концентрацией напряжений, нагруженных переменной осевой нагрузкой.— В кн. Вопросы усталостного разрушения сталей Пер. с англ. М. Машгиз, 1957, с. 92—118  [c.336]

Переходя к трактовке изложенных данных, отметим, что в отличие от предыдущего парафафа при усталостном разрушении принципиальную роль Ифает масштабный фактор, в связи с чем поведение системы определяется не напряжениями сг, а коэффициентом их интенсивности К задаваемым длиной трещины I. В материалах с кинематичес-  [c.312]

Трудности в установлении однозначной связи между шероховатостью поверхности и фрактальной размерностью структуры излома вполне очевидны. Уже отмечалось, что в реальных физических процессах самоподобие фракталов обеспечивается на ограниченных масштабах. Причиной этому является зависимость рельефа поверхности от локальных процессов разрушения, формирующих излом. Здесь мы опять приходим к проблеме о связи процессов на различных масштабных уровнях. Накопленный массив экспериментальных данных, полученных при электронномикроскопических исследованиях хюверхно-сти изломов показывают, что установление этой связи требует учета многих внешних факторов, влияющих на механизм локального разрушения. Фракто-графические исследования позволяют заключить, что на микроуровне и мезо-уровне сохраняются те же характерные признаки вязкого и хрупкого разрушения, как и на макроуровне. В этой связи следует отметить, что большую информацию несут фрактографические исследования усга юстных разрушений при низких скоростях роста трещины. В этом случае легко выявляется кооперативное взаимодействие хрупких и вязких механизмов разрушения. На рисунке 4.43 показаны фрактограммы, полученные при большом увеличении с локальных зон усталостных изломов.  [c.330]

Масштабный фактор влияет не только на предел выносливости гладких образцов, но также изменяет характеристики циклической трещиностойкости, которые оцениваются при построении кинетических диаграмм усталосгного разрушения (КДУР). На рис. 51 приведены сравнительные данные гго исследованию скорости распространения усталостных трещин (РУТ) в сталях  [c.83]

Предел выносливости возрастает с увеличением Ов и 0(,,2, однако у высокопрочных сталей, обладающих высокой ч щстви-тельностью к концентраторам напряжений, предел выносливости может быть пониженным (см. рис. 74). У высокопрочных сталей сильно возрастает коэффициент К вследствие резкого увеличения коэффициента Ка по мере роста Оо,2 и снил ения коэффициентов Kda (масштабный фактор) и Кра учитывающего качество обработки поверхности. Снижается и вязкость разрушения Ki , а следовательно, и сопротивление росту усталостной трещины (живучесть). Это нужно учитывать, когда из соображений снижения массы конструкции выбирают сталь с высоким 0(,,2-  [c.318]


Смотреть страницы где упоминается термин Усталостные разрушения Фактор масштабный : [c.144]    [c.146]    [c.4]    [c.28]    [c.34]    [c.153]   
Прочность, устойчивость, колебания Том 1 (1968) -- [ c.153 ]



ПОИСК



Масштабный

Масштабный фактор при разрушении

Масштабный фактор разрушени

Усталостная

Усталостное разрушение

Фактор масштабный



© 2025 Mash-xxl.info Реклама на сайте