Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волна отрицательная

К моменту времени = 21/а отраженная волна пройдет путь I и достигнет затвора — закончится 2-я фаза гидравлического удара. Затем от затвора пойдет волна отрицательного ударного давления —Руд = —роа (см. рис. 42) вследствие гашения скорости v обратного  [c.102]

В уравнении (74) оба знака перед корнем отвечают реальным значениям приведенной скорости. Положительный знак соответствует детонационному горению ( i>l), т. е. скорости распространения ударной волны. Отрицательный знак отвечает распространению медленного горения. Следует заметить, что формула (74) также и при отрицательном знаке пригодна для детонации. В этом случае она связывает приведенную скорость непосредственно за фронтом скачка уплотнения (вместо Xi) с величиной  [c.224]


Если длина трубопровода позволяет отраженной волне отрицательного давления достигнуть конца трубы раньше, чем запорное устройство успеет закрыться, приращения давления складываются. В этом случае суммарное приращение давления будет меньше, чем при прямом гидравлическом ударе. Такой удар называют непрямым.  [c.372]

В уравнении (74) оба знака перед корнем отвечают реальным значениям коэффициента скорости. Положительный знак соответствует детонационному горению (Х > 1), т. е. скорости распространения ударной волны. Отрицательный знак отвечает  [c.172]

Какие условия должны быть выполнены, чтобы в среде возникла волна отрицательной энергии Очевидно, для этого нужно, чтобы медленная волна имела возможность отдавать некоторую часть своей энергии среде или другим волнам. Проиллюстрируем это на примере резистивного усилителя [8] (рис. 10.1). Предварительно модулированный во входном устройстве электронный пучок проходит через диэлектрическую трубку, внутренняя поверхность которой покрыта поглощающим слоем, и наводит в нем переменный заряд. Поля, создаваемые наведенными зарядами, в свою очередь, воздействуют на электронный пучок и изменяют переменную составляющую тока пучка. После прохождения трубки поток попадает в выходное устройство.  [c.205]

Взрывная неустойчивость, проявляющаяся в одновременном нарастании амплитуд всех резонансно связанных волн возможна и в среде без диссипации, если среда неравновесна [7, 10]. Примером может служить взаимодействие волн разных знаков энергий (см. гл. 10) в системе плазма-электронный поток. Если отрицательной энергией обладает волна, которая распадается ( з), либо пара низкочастотных волн ( 1,2), то в правых частях уравнений для 1,2,3 будут одинаковые знаки, и вместо (17.9) мы вновь приходим к уравнениям вида (17.31). Поскольку волны отрицательной энергии, отдавая энергию другим волнам (и увеличивая их амплитуды), нарастают по амплитуде и сами, становится понятным одновременный рост всех взаимодействующих волн, наблюдаемый при взрывной неустойчивости [11].  [c.369]

Первый член в уравнении (2.9) описывает волну, распространяющуюся в положительном, а второй член — в отрицательном направлении оси у.  [c.25]

В необыкновенном луче электрический вектор расположен в главном сечении (плоскости, проходящей через оптическую ось кристалла и падающий луч). В результате этого в зависимости от направления распространения необыкновенной волны угол между электрическим вектором и оптической осью меняется от О до 90 , что приводит к изменению скорости распространения необыкновенного луча = Vg от некоторого максимального или минимального (в зависимости от знака кристалла) значения скорости Ve до значения скорости обыкновенного луча t o- Соответственно показатель преломления для необыкновенного луча в зависимости от направления распространения в кристалле принимает значения между и п . Например, для исландского шпата (отрицательный кристалл) По — 1,658 п, = 1,486.  [c.260]


Поглощение света с точки зрения классической теории. Под действием электрического поля световой волны с круговой частотой со отрицательно заряженные электроны атомов и молекул смещаются относительно положительно заряженных ядер, совершая гармоническое колебательное движение с частотой, равной частоте действующего поля. Колеблющийся электрон, превращаясь в источник, сам излучает вторичные волны. В результате интерференции /j падающей волны со вторичной в среде возникает волна с амплитудой, отличной от амплитуды вынуждающего поля. Поскольку интенсивность есть величина. Рис. 11.10 прямо пропорциональная квадрату амплитуды, то соответственно изменится и интенсивность излучения, распространяющегося в среде другими словами, не вся поглощенная атомами и молекулами среды энергия возвращается в виде излучения — произойдет поглощение. Поглощенная энергия может превратиться в другие виды энергии. В частности, в результате столкновения атомов и молекул поглощенная энергия может превратиться в энергию хаотического движения — тепловую.  [c.279]

Часть энергии излучения лампы накачки с частотой = = ( 3 — Ei)/k (эта частота соответствует частоте зеленого света) расходуется для накачки, т. е. для создания состояния с отрицательной температурой. Атомы, находящиеся в возбужденном состоянии 3, отдавая часть своей энергии кристаллической решетке, безызлучательно переходят в метастабильное состояние 2- Затем, излучая красный свет с длиной волны I = 6943 А, атомы могут спонтанно перейти в основное состояние. Так возникает красная флуоресценция кристалла рубина.  [c.384]

Прибор магнетронного типа с продольным взаимодействием — прибор, в котором замедление электромагнитной волны происходит в осевом направлении, а кольцевое магнитное поле образуется током, проходящим по центральному проводу, являющемуся отрицательным электродом.  [c.151]

Его теория базируется на предположении о наличии у волны в кристалле двух волновых поверхностей. Скорость обыкновенной волны Ua "= с/па одинакова во всех направлениях (ей должна соответствовать сферическая волновая поверхность). Скорость необыкновенной волны и = с/п , зависит от направления, ее распространения. Она совпадает по значению с в направлении оптической оси кристалла и больше всего отличается от и в направлении, перпендикулярном оптической оси. Волновая поверхность необыкновенной волны для одноосного кристал.аа имеет вид эллипсоида вращения, который в направлении оптической оси должен касаться сферической волновой поверхности обыкновенной волны. Для отрицательного кристалла п , > п,, следовательно, Uo < Uf,, т.е. шар вписан в эллипсоид вращения. Для положительного кристалла и и волновая поверхность обыкновенной волны (шар) охватывает волновую поверхность необыкновенной волны (эллипсоид вращения). На рис. 3.18 представлены оба этих случая.  [c.131]

Здесь v — частота, принимаемая в системе 5, а v — частота передаваемая в системе S. Если приемник удаляется от источника, то величина р = j положительна и v < v. Если приемник приближается к источнику, то мы должны считать р отрицательной величиной, а v > v. Перейдя к длинам волн Я = /v, V = j , получаем (рис. 11.21)  [c.360]

Для растворов С60 в толуоле, н-гексане и ССЦ при длинах волн 315 и 364 нм. (УФч)бласть) наблюдаются отрицательные отклонения от основного закона светопоглощения (ОЗС) (рис. 5.19). При длинах волн падающего излучения 670 и 750 нм (видимая область) для С60 в U отклонения от ОЗС положительны. Подобные отклонения возникают при наличии в растворах межмолекулярного взаимодействия, а также при изменении степени ассоциации кластеров с изменением концентрации растворов.  [c.233]

Решение. Рассматриваем процесс в системе координат, в которой ударная волна покоится, а газ движется через нее в положительном направления оси х падающая звуковая волна распространяется в отрицательном направлении оси X. При нормальном падении (а потому и отражении) в отраженной энтропийной волне скорость = 0. Возмущение давления Sp = = -f где индекс (0) относится к падающей, а индекс (зв) — к отраженной звуковым волнам. Для скорости Sy.r = 6у имеем  [c.479]


Если эта производная отрицательна и на всем протяжении ширины переходного слоя, то по мере сжатия вещества (уменьшения V) при переходе со стороны 1 на сторону 2 температура будет монотонно возрастать в согласии с неравенством (95,3). Другими словами, мы будем иметь дело с ударной волной, сильно расширенной благодаря большой теплопроводности (расширение может оказаться столь большим, что самое представление  [c.498]

Как показал В. А. Сарайкин [85], при достаточно быстром росте силы, действующей на берега трещины, излучение волны отрицательных напряжений может приводить к торможению трещины.  [c.235]

С этой скоростью 5кндкая колонна (рис. 1.106, г) стремится оторваться от крана, в результате возникает отрицательная ударная волна под данлением — Руп> которая направляется от крана к резервуару со скоростью с, оставляя за собой сжавшиеся стенки 1рубы и расширившуюся жидкость, что обусловлено сни кением давления (рис. 1.106, д). Кинетическая энергия жидкости вновь переходит в работу деформаций, но противоположного знака.  [c.141]

Если время закрытия < 2Иа, где 2Иа представляет время пробега ударной волны от затвора к резервуару и обратно, то суммарное давление, накопившееся у затвора за время Т , можно вычислить по формуле (XII—16). Тавдй гидравлический удар называется прямым, В противном случае (т. е. при Т. > 2//а) к неуспевшему еще закрыться затвору через промежуток времени 211а от начала закрытия начнут прибывать одна за другой отраженные от резервуара отрицательные элементарные ударные волны. Они складываются с волнами, продолжающими возникать у затвора, в результате чего суммарное давление у затвора не достигает величины А,Оуд, вычисляемой по формуле (XII—16). Такой гидравлический удар называется непрямым.  [c.347]

Поскольку применение энергии света для тех или иных технологических процессов связано с фокусировкой луча, поли-хроматичность играет в данном случае отрицательную роль. Полихроматический свет при прохождении через линзу фокусируется в виде пятна довольно значительных размеров, так как волны разной длины по-разному преломляются при прохождении через стекло. Это явление носит название хроматической аберрации и значительно ограничивает возможности обычных полихроматических источников.  [c.116]

Замечательно следующее обстоятельство. Равенства (3.14) и (3.15) помимо величин а у) и у) содержат только постоянные величины fi2 и р,2- Следовательно, при допущении ударных волн в области влияния величины а и 1 постоянны на экстремали там, где это не ведет к нарущению условия p ip) > V o(V )- Из (3.13) видно, что в плоском случае и = 0) величина (р также постоянна, а в осесимметричном случае и = 1) величина (р увеличивается вместе с у, поскольку i/v = onst и при и > 1 величина к отрицательна. Обратимся к выявлению области рещений без ударных волн.  [c.93]

Коэффициент Керра. Коэффициент Керра для разных образцов может быть положительрп 1м или отрицательным. Для данного образца коэффициент Керра не является постоянной величиной, а зависит от температуры и длины волн.  [c.290]

Следовательно, при значениях x= onst + U3B плотность жидкости (а также Р, v и ф) неизменна. Это означает, что картина движения распространяется в жидкэсти вдоль оси X со скоростью звука и..,п. Таким образом, функция f i x—VaJ) представляет бегущую плоскую волну, которая распространяется в положительном направлении оси X. Аналогично функция fi x + VaJ ) представляет плоскую звуковую волну, которая распространяется в отрицательном направлении оси X. Скорость движения жидкости направлена в рассматриваемом случае вдоль оси X, т. е. вдоль распространения звуковой волны. Такие волны называют продольными.  [c.275]

В качестве основного объекта исследования разумно и по сей день выбирать упомянутый выше исландский шпат, хотя почти все кристаллы в той или иной степени обладают этим свойством. Опыт показывает, что при освещении кристалла исландского шпата узким пучком света в нем возникают два луча, которые со времен Гюйгенса называют обыкновенным и необыкновенным (рис.3.1). Этот эффект наблюдается и при нормальном падении света на естественную грань кристалла. Для необыкновенного луча показатель преломления rig зависит от направления луча а кристалле, тогда как Пд — показатель преломления обыкновенного луча — остается постоянным при любом угле падения световой волны на кристалл. В частности, для исландского шпата (для света с длиной волны X = 5893А — желтый дуб.иет натрия) Лц = 1,658, а 1,486 < < 1,658. Следовательно, в данном случае Пе < По- Такие кристаллы называют отрицательными. Вместе с тем существует широкий класс веществ (например, кристаллический кварц), для которых > л,,. Такие кристаллы называют положительными.  [c.114]

Второй постулат свод1ггся к утверждению, что существует конечная максимальная скорость распространения любого взаимодействия, которая равна с — скорости света в вакууме. По принципу относительности эта скорость одинакова во всех инерциальных системах и не зависит от длины волны, интенсивности и относительной скорости движения источника и приемника света. Таким образом отвергаются теорема сложения скоростей в классической механике и различные построения, которые выдвигались в свое время для истолкования отрицательного результата опыта Майкельсона - Морли.  [c.372]

Можно также заметить, что осмыслить понятие вынужденного излучения с позиций какой-либо одной теории света достаточно трудно. Для того чтобы описать усиление сигна та (( отрицательное поглощение-)), удобно по.тьзоваться терминами квантовой оптики, сводя вопрос к рождению новых фотонов при прохождении светом активной среды. Но при последующем описании свойств таких фотонов удобно пользоваться терминами и понятиями волновой оптики, указав, что фазы вторичных волн жестко связаны (полностью скоррелированы).  [c.462]


Экспериментальное открытие электрона, радиоактивности, термоэлектронной эмиссии (испускание нагретыми металлами электронов), фотоэффекта (вырывание электронов из металлов под действием света) и других явлений — все это указывало на то, что атом вещества является сложной системой, построенной из более мелких частиц. Перед физикой встала проблема строения атома. Как устроен атом Первая (статическая) модель атома была предложена в 1903 г. Дж. Дж. Томсоном, согласно которой положительный заряд и масса распределены равномерно по всему атому, имеющему форму сферы радиуса 10 м. Отрицательные электроны расположены внутри этой сферы, образуя некоторые конфигурации, и взаимодействуют с отдельными ее элементами по закону Кулона. Электроны в атоме пребывают в некоторых равновесных состояниях. Если электрон получает малое смещение, то возникает квазиупругая сила — и электрон начинает совершать колебания около рав1Ювесного положения и излучать световые волны. Хотя модель Томсона объясняла некоторые явления, все же вскоре выяснилась ее несостоятельность.  [c.10]

Таким образом, f x — t) представляет собой, как говорят, бегущую плоскую волну, распространяющуюся в положительном направлении оси х. Очевидно, что fiix + t) представляет собой волну, распространяющуюся в противоположном, отрицательном, направлении оси х.  [c.352]

Коэффициент при квадратной скобке в (91,7) положителен. Поэтому знак отношения 8V[/8S определяется знаком выражения в этой скобке. Для всех устойчивых ударных волн этот знак положителен, так что 6t i/65 < 0. Но при выполнении какого-либо из условий (90,12—13) гофрировоч-ной неустойчивости выражение в скобках становится отрицательным, так что 6ui/65 > 0.  [c.483]

Положительное направление оси х совпадает с направлением движения газа через не.чолаижную ударную волну. Если перейти к системе отсчетй, в которой неподвижен газ перед ударной волной, то сама ударная волнй будет двигаться в отрицательном направлении оси х.  [c.489]

Члены второго порядка в уравнениях можно упростить, приведя их всех к одинаковому виду — содержащему произведение р дрЧдх. Для этого замечаем, что для волны, распространяющейся в отрицательном направлении оси. с (со скоростью с) дифференцирование по I эквивалентно дифференцированию по xj при этом V = —p I po. После всех этих замен получим из (1) и (2) следующие уравнения  [c.494]

Разрывы, возникающие при распаде начального разрыва, должны, очевидно, двигаться от места их образования, т, е. от места нахождения начального разрыва. Легко видеть, что при этом в каждую из двух сторон (в положительном и отрицательном направлениях оси х) может двигаться либо одна ударная волна, либо одна пара слабых разрывов, ограничивающих волну разрежения. Действительно, если бы, скажем, в положительном направлении оси х распространялись две образовавшиеся в одном и том же месте в момент t = О ударные волны, то передняя из них должна была бы двигаться со скоростью большей, чем скорость задней волны. Между тем согласно общим свойствам ударных волн первая должна двигаться относительно остающегося за ней газа со скоростью, меньшей скорости звука с в этом газе, а вторая должна двигаться относительно того же газа со скоростью, превышающей ту же величину с (в области между двумя ударными волнами с = onst), т. е. должна догонять первую. По такой же причине не могут следовать друг за другом в одну и ту же сторону ударная волна и волна разрежения (достаточно заметить, что слабые разрывы движутся относительно газов впереди и позади них со звуковой скоростью). Наконец, две одновременно возникшие волны разрежения не могут разойтись, так как скорость заднего фронта первой равна скорости заднего фронта второй.  [c.520]


Смотреть страницы где упоминается термин Волна отрицательная : [c.372]    [c.530]    [c.227]    [c.240]    [c.42]    [c.203]    [c.95]    [c.587]    [c.151]    [c.213]    [c.213]    [c.567]    [c.491]    [c.516]    [c.528]    [c.630]    [c.173]    [c.195]   
Гидравлика. Кн.2 (1991) -- [ c.2 , c.77 ]

Гидравлика (1982) -- [ c.361 , c.369 ]

Гидравлика (1984) -- [ c.368 ]

Гидравлика Изд.3 (1975) -- [ c.316 , c.317 ]



ПОИСК



Волна при гидравлическом ударе отрицательная

Волна с положительной и отрицательной

Волны отрицательной энергии

Волны с отрицательной энергией. Связанные волОбщие замечания

Волны с положительной и отрицательной энергией

Отрицательные



© 2025 Mash-xxl.info Реклама на сайте