Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сталь Свойства механические и усталостны

В табл. 3, 4 и 5 приведены химический состав, термообработка и механические и усталостные свойства наиболее употребительных пружинных сталей для витых пружин [28].  [c.651]

Механические и усталостные свойства пружинных сталей [28]  [c.652]

В зависимости от условий испытания, химического состава, структуры и физико-механических свойств стали или сплава сопротивление усталости и усталостная долговечность возрастают  [c.239]


Применение несколько более дорогих хромомарганцовистых пружинных сталей позволяет увеличивать толщину заготовок до предельных размеров (25—30 мм). Эти стали обладают глубокой прокаливаемостью и высокими характеристиками прочности. Недостатком их является склонность к отпускной хрупкости [30]. Хромованадиевая пружинная сталь отличается высокими механическими свойствами вообще и высокой усталостной прочностью в особенности Она обладает пониженной склонностью к поверхностному обезуглероживанию и отличается устойчивостью по отношению к температурам до 350 . Эта сталь по своим качествам занимает среди других пружинных материалов одно из первых мест (клапанные пружины двигателей), однако высокая стоимость ограничивает её применение (холоднокатаная проволока из хромованадиевой стали может изготовляться диаметром до 10 мм).  [c.651]

Таким образом, долговечность и надежность нефтегазовых систем во многом определяются коррозионными, коррозионно-механическими и кор-розионно-усталостными свойствами сталей типа 18-10.  [c.3]

Закономерности нестабильного развития усталостных трещин исследовались в конструкционных сталях, характеристики механических свойств которых и температура хрупкости изменялись двумя способами — понижением температуры испытаний и специальной термической обработкой, для изучения влияния способа изменения характеристик механических свойств исследуемых сталей на закономерности нестабильного развития усталостных трещин в них и на характеристики их вязкости разрушения.  [c.192]

Простота переработки и разнообразие свойств АП в сочетании с различными технологическими процессами изготовления деталей из них предоставляют конструкторам широкие возможности в сравнении с металлами. Хотя АП, как правило, менее жесткие, детали и узлы из них можно легко спроектировать так, что они по своим функциональным качествам не будут уступать штампованным из листовой стали. Ими можно заменить отливки, поковки и прессованные металлические профили. При этом снижается масса, повышается коррозионная стойкость, а зачастую также ударопрочность и выносливость. Эти свойства крайне важны для капотов и крыльев грузовых автомобилей средней и большой грузоподъемности, при изготовлении которых традиционную листовую сталь уже успешно заменили полиэфирной смолой, армированной стекловолокном. Так как эти синтетические материалы показали высокие эксплуатационные качества и были одобрены потребителем, теперь из них заказывают крыши, нижние боковины и двери кабин и даже целые кабины для большегрузных автомобилей. Сравнительная характеристика основных механических свойств АП и металлов приведена в табл. 26.3, по данным фирмы Форд мотор . Показатели усталости весьма общие из-за недостаточного объема испытаний, множества составов АП, различия методов испытаний и критериев оценки усталостного разрушения.  [c.488]


Интенсивность понижения кривой выносливости зависит также от химического состава стали, ее термической и механической обработки, свойств коррозионной среды, напряженного состояния и частоты приложения напряжений. Действительно, коррозионно стойкие стали почти всегда более стойки к коррозионной усталости исследования показали, что термическая обработка стали придает ей различную стойкость (см. дальше, VI—4). Коррозионно-усталостная стойкость зависит и от механической обработки поверхности стали, например  [c.105]

Однако имеется достаточно много исследований, в которых было показано, что соотношение (6.1) не является универсальным. Особенно это относится к высокоуглеродистой стали, структура которой состоит из сложных продуктов превраш ения аустенита. В этом случае определяющим фактором является не размер зерна, а дисперсность фаз (величина поверхности раздела фаз), входящих в состав структуры. Существует мнение, что в высокоуглеродистых сталях одним из важнейших структурных параметров, влияющих на комплекс механических свойств, является размер областей когерентного рассеяния (блоков мозаики). В работе Д.С. Казарновского и др. [24] на образцах из углеродистой стали (0,78% С 0,86% Мп 0,17% Si) (сталь I) и низколегированной стали системы r-Si-Mn-V (0,67% С 1,08% Мп 0,65% 81 0,82% Сг 0,09% V) (сталь II) исследовалась взаимосвязь между размером областей когерентного рассеяния О и усталостной прочностью а 1. Разную величину О и плотность дислокаций получали соответствующей термообработкой. Основные режимы термообработки (1-4) приведены в табл. 6.1. Из таблицы следует, что наряду с обычной термообработкой (закалка в масло и отпуск) проводилась изотермическая закалка в расплаве солей, так как при ней превращение аустенита высокоуглеродистой низколегированной стали в промежуточной области обеспечивает получение более мелкой структуры с наибольшей плотностью дислокаций. Кроме того, дополнительной специальной термообработке подвергали сталь II закалка с  [c.211]

Механические свойства сталей, чугунов, цветных металлов и сплавов определяют экспериментально на образцах при различных видах их нагружения. Наибольшее применение имеют механические характеристики (табл, 5), определяемые на основании испытаний образцов на растяжение, ударную вязкость и усталостную выносливость.  [c.10]

Стали. Стали находят широкое применение в автомобильном и тракторном двигателестроении, что объясняется их высокими механическими свойствами (пределом прочности при различных деформациях, твердостью, ударной вязкостью, относительным удлинением, износостойкостью, усталостной прочностью и др.), хорошей обрабатываемостью резанием, высокой вязкостью при нагреве (некоторые марки сталей обладают вязкостью и в холодном состоянии), а также наличием других свойств (электропроводности, магнитных свойств, теплопроводности и др.).  [c.39]

Круглозвенные высокопрочные цепи для горных машин по ОСТ 12.44.013—75 (табл. 9) выполняют калиброванными из круглой калиброванной стали по ГОСТ 7417—75, механические свойства которой должны обеспечивать показатели прочности и усталостной долговечности, приведенные в табл. 10. После сварки цепи подвергают термической обработке, а затем галтовке или дробемет-ной обработке.  [c.27]

В соответствии с вышесказанным прочностные свойства сталей, подвергнутых ВТМО и обычной закалке, определялись при механических испытаниях, включавших растяжение, кручение в прямом и обратном направлениях, изгиб гладких образцов и образцов с надрезом и наведенной усталостной трещиной. Применение такого набора методов испытания позволило получать в образцах различную степень соответствия схем главных напряжений и деформаций при упрочняющей деформации и испытании.  [c.27]

Цементация применяется для получения высокой поверхностной твёрдости, износостойкости и повышения механических свойств предела прочности при растяжении и изгибе, а также и усталостной прочности. Эти свойства достигаются насыщением поверхностного слоя стали углеродом и последующей термической обработкой. Цементации подвергаются ответственные детали машин (шестерни, валики, втулки и др.).  [c.310]


В табл. 93 приведены пределы выносливости качественных сплавов [2]. Результаты получены при испытании на изгиб гладких образцов при симметричном цикле изменения напряжений. База испытаний 100-10 циклов, частота изменения напряжений 7200 циклов в минуту. Для иллюстрации влияния пониженных температур на усталостную прочность в табл. 94 приведены результаты испытаний трех марок сталей при комнатной и пониженных температурах. Пределы выносливости были определены в результате испытания образцов на изгиб при симметричном цикле изменения напряжений. Как следует из табл. 94, в интервале температур от - -20° до —75° С изменение механических свойств незначительно. При уменьшении температуры примерно до —190° С предел выносливости стали Ст. 3 возрастает на 112%, а стали Х4Н на 44%.  [c.692]

При анализе закономерностей изменения пределов выносливости по трещинообразованию и разрушению от термической обработки и поверхностного наклепа необходимо учитывать следующее. Пределы выносливости материала зависят от его свойств, величины и распределения остаточных напряжений термического или механического происхождения, а также формы концентратора напряжений (наличия нераспространяющихся трещин в исходных острых надрезах). В связи с этим при сравнении пределов выносливости по трещинообразованию различных материалов, полученных на одинаковых образцах, необходимо иметь в виду следующее. Различие в пределах выносливости может быть следствием того, что для одного материала выбранный концентратор напряжения имеет закритическое значение теоретического коэффициента концентрации напряжений (аа>асткр) и в нем имеются нераспространяющиеся усталостные трещины, а для другого материала концентратор тех же размеров имеет докритическое значение этого коэффициента (ао<аокр) и в нем нет нераспространяющихся трещин. Наличие в зоне надреза остаточных сжимающих напряжений термического происхождения снижает влияние остаточных напряжений, возникающих в результате последующего поверхностного наклепа, так как возможности увеличения сопротивления усталости за счет этих напрял<ений уже в какой-то мере исчерпаны. Так, для стали 08 после закалки и старения (см. рис. 61, а) наблюдается отклонение от полученной зависимости, которое можно объяснить следующим образом. Термическая обработка приво-  [c.151]

До недавнего времени прокатные изделия из малоуглеродистой стали редко подвергали термической обработке в связи с ее небольшой эффективностью. Однако в последние годы доказана возможность и целесообразность существенного улучшения механических свойств этой группы строительных сталей проведением закалки и высокого отпуска или самоотиуска с использованием тепла прокатного нагрева или повторного нагрева [1—3]. Поскольку такой вид термообработки предложен недавно, то в этой области есть ряд недостаточно изученных вопросов. В частности, нет сведений о характере и степени термического улучшения усталостной прочности, включая циклическую трещииостойкость.  [c.175]

Таким образом, оптимальный комплекс механических свойств стали 14Х2ГМР обеспечивается в результате ВТМО (закалки с прокатного Нагрева) и отпуска при 650—680° С. ВТМО существенно повышает сопротивление высокопрочной строительной стали хрупкому и усталостному разрушению. При этом увеличивается конструктивная прочность стали зй счет создания устой-, чивой субструктуры по типу п олигонизации. ВТМО существенно повышает ударную вязкость высокопрочной стали, работу распространения трещин, вязкость разрушения, усталостную прочность и резко снижает порог хладноломкости.  [c.22]

После ВТМО сталь типа бйС Х обладает 1акже повышенным запасом пластичности в условиях низкотемпературных испытаний и примерно на 20° С более низким порогом хладноломкости при практически полном подавлении интеркристаллитного характера разрушения 110]. На стали 55ХГСФ наряду с повышением всего комплекса механических свойств ВТМО повышает усталостную прочность с 47 кгс/мм до 63 Krt/мм и работу распространения трещины [79].  [c.39]

Применение термического упрочнения при изготовлении листового проката из малоперлитных сталей способствует повышению их прочностных. свойств, что обеспечивает более экономное расходование проката. Например, упрочнение стали 09Г2ФБ по режиму контролируемая прокатка с деформацией е = 40 % + закалка в воде от температуры конца прокатки 900 °С + отпуск при 670 °С 1 ч позволяет значительно улучшить ее механические свойства (табл. 8) [26]. Такая технология повышает сопротивление стали хрупкому и усталостному разрушению. Предел выносливости стали возрастает от 300 до 380 МПа. Повышение предела выносливости пропорционально повышению прочностных свойств объясняется созданием  [c.16]

Стали этого класса обладают уникальным комплексом механических свойств иысокой прочностью при достаточной пластичности и вязкости, нысоким сопротинлением малым пластическим д рмациям, хрупкому и усталостному разрушению, что в сочетании с хладостойкостью, теплостойкостью, коррозионной стойкостью и размерной стабильностью определяет такую эксплуатационную надежность изделий из мартенситно-стареющих сталей, которая vHe достигается при использовании сталей других классов [24].  [c.30]

Когда между отливками или отливками и прокатными элементами имеются механически обработанные электрошлаковые швы, то дефекты в литой стали являтся критическими для усталостной прочности сварных соединений [87, 176, 228]. В этом случае механические свойства металла электрошлакового шва выше, чем литой стали, и усталостные разрушения проходят по стали.  [c.78]


Пружины, изготовленные из патентированной и холоднодеформируемой стальной проволоки или ленты, после дополнительного отпуска приобретают высокую прочность, в том числе и усталостную, при повышенной вязкости. Поэтому эта сталь рекомендуется для изготовления тяже-лонагруженных пружин преимущественно из профилей малого сечения (толщиной или диаметром до 1,5-2 мм). При больших диаметрах проволоки не удается обеспечить высоких степеней обжатия, и поэтому стандартный комплекс механических свойств в этих сечениях ниже, но не уступает свойствам, получаемым после обычной закалки и отпуска. Однако и в этом случае по ограниченной выносливости и меньшей склонности к хрупкому разрушению пружины из патен-тированных сталей превосходят закаленные и отпущенные. В тоже время у стали, закаленной и отпущенной на равную твердость с патентированной и холоднотянутой, более высокий предел упругости и большая релаксационная стойкость при 20 °С, но при нагреве эта стойкость для стали после обеих упрочняющих обработок практически одинакова.  [c.350]

Электрошлаковый переплав стали предложен и внедрен в произ водство Институтом электросварки АН УССР им. академика Е. О. Па-тона. Этот новый метод передела стали снижает в стали количество загрязнений и исключает опасность поражения слитков осевой рыхлостью и образования усадочных раковин и позволяет регулировать при переплаве размер зерна. Металл электрошлакового переплава отличается высокой плотностью и однородностью макро- и микроструктуры, низким содержанием газов и неметаллических включений, предопределяющими однородность механических и электрохимических свойств. Однако в связи с молодостью этого метода еще не выяснены прочностные свойства стали электрошлакового переплава в коррозионных средах, в связи с чем мы провели исследование коррозионно-усталостной прочности стали ШХ15 в 3%-ном растворе Na l. Одновременно выяснилась коррозионная стойкость этой стали.  [c.159]

До сих пор нет единого мнения о связи между скоростью роста трещин и другими характеристиками механических свойств металлов1 Описание экспериментальных данных по распространению усталостной трещины с помощью коэффициента интенсивности напряжений позволяет сопоставить результаты испытаний сталей различного класса и структуры в разных условиях нагружения.  [c.312]

В работе [39] было рассмотрено влияние тонкой структуры на циклическую трещиностойкость (вторая стадия распространения усталостной трещины) закаленных и отпущенных сталей 09Г2С, 35 и 80. Механические свойства, режимы термообработки и параметры субструктуры исследованных сталей представлены в табл. 6.5 и 6.6, а пэрисовские участки диаграмм усталостного разрушения - на рис. 6.23.  [c.223]

ЦХТО по способу, приведенному в работе [217], обеспечивает измельчение структуры как цементованного слоя, так и сердцевины изделия. Это повышает комплекс механических и эксплуатационных свойств. Так, на исследованной стали 20Х твердость поверхностного слоя 62—63 HR s, ударная вязкость 138—142 Дж/см Важно, что в 1,5 раза возрастает предел усталостной прочности образцов по сравнению с теми образцами, которые были обработаны по способу-прототипу.  [c.205]

Значительное ухудшение механических свойств в результате наводороживания приводит к возникновению так называемой водородной хрупкости стали. Разрушение при этом происходит под действием напряжений, которые могут иметь как статический, так и циклический характер (в последнем случае наступает водородная усталость). Величины указанных разрушающих напряжений значительно меньше соответствующих характеристик разрывной и усталостной прочности ненаводороженной стали. Кроме того, наводороживание, как указывалось выше, при соответствующем возрастании давления газообразного водорода во внутренних полостях металла может вызвать расслоение (пузырение) стали. Этот вид разрушения может иметь место и при отсутствии внешней нагрузки.  [c.21]

Высокопрочные чугуны получают введением в расплавленный чугун добавок из магния или магниевых лигатур. Это приводит к изменению формы графитовых включений в чугуне вместо пластинчатых они приобретают шаровую форму с образованием мелких сферических зерен. Благодаря этому снижается концентрация напряжений около зерен и металл приобретает повышенные механические свойства, иногда приближающиеся к механическим характеристикам сталей. Удлинение, ударная вязкость и усталостная прочность некоторых высокопрочных чугунов таковы, что в ряде случаев этим материалом можно заменить сталь. Для отливок наиболее часто применяют высокопрочные чугуны ВЧ45-5, ВЧ42-12 и другие (в обозначении первое число показывает предел прочности при растяжений, второе число — удлинение при  [c.37]

Таким образом, из-за исключительно сложных и тяжелых условий работы коленчатого вала предъявляются высокие и разнообразные требования к механическим свойствам материалов, применяемых для изготовления коленчатых валов. Материал коленчатого вала должен обладать высокой прочностью и вязкостью, большой сопротивляемостью износу и усталостным напряжениям, сопротивлением действию ударных нагрузок и твердостью. Такими свойствами обладают правильно обработанные углеродистые и легированные стали, а также высококачественный чугун. Коленчатые валы отечественных автомобильных и тракторных двигателей изготовляют из сталей 40, 45, 45Г2, 50, специального чугуна, а для форсированных двигателей—из высоколегированных сталей 18ХНВА, 40ХНМА и др.  [c.245]

Термическая обработка, состоящая из закалки и отпуска, представляет главное средство изменения механических свойств металлических сплавов, в частности сталей. Улучшение, состоящее из закалки и низкого отпуска, дает возможность более чем в 2 раза повысить предел прочности любой улучшаемой конструкционной стали, по сравнению с нормализацией пли отжигом. Соответственно изменяются и характеристики усталостной прочпости (п. 25). С увеличением прочности понижаются, однако, свойства пластичности и вязкости и возрастает чувствительность  [c.192]

Применение хромомарганцовистых пружинных сталей позволяет увеличивать толщину заготовок до 30— 40 мм и более. Эти стали обладают глубокой прокаливаемостью и высокими характеристиками прочности. Их недостаток — склонность к отпускной хрупкости [18]. Хромованадиевая пружинная сталь отличается высокими механическими свойствами вообще и высокой усталостной прочностью в особенности, менее склонна к поверхностному обезуглерожива-  [c.6]

Азотирование — одно из эффективных методов поверхностного упричкения, ( вышаюшее одновремеппо и износостойкость и усталостную прочность стальных деталей. Однако процесс азотирования применялся, как правило, для сталей, содержащих хром, молибден и алюминий только такие стали обеспечивают высокое качество азотированного слоя и высокие механические свойства сердцевины.  [c.231]

Соединения, выполняемые контактной стыковой сваркой, обладают высокими механическими свойствами не только при статических, но и усталостных нагрузках. При сварке малоуглеродистых и многих низколегированных сталей соединения сваренные контактным стыковым способом, имеют предел выносливости, разный пределу выносливости основного металла. Например, для соединений малоуглеродистых сталей, испытываемых при симметричном цикле (г= —1), предел выносливости достигает 16- 19 кГ1мм . Большое влияние на усталостную прочность оказывает качество провара стыка, а также состояние его поверхности. При грубой обработке поверхности предел выносливости меньше при гладкой и особенно полированной больше. Стыковые соединения, сваренные контактным способом, почти не обладают концентрацией напряжений и поэтому рациональны.  [c.231]


Бунгарт и Сихровский [122] установили для хромомолиб-денникелевых сталей зависимость между структурой и усталостью. Они оценили результаты металлографических, рентгенографических и магнитных исследований для закаленного, отожженного и холоднодеформированного состояний. Были изучены после длительного отжига при температурах 600—800°С хладно- и красноломкость без механической нагрузки и усталостная прочность, ползучесть и красноломкость под нагрузкой при температуре 650°С, а также влияние содержания молибдена, ниобия и никеля и предварительной обработки на эти свойства.  [c.190]

Механические свойства материала литых вставок, изготовленных из менее легированной стали марки 5ХНМ (В), как и следовало ожидать, значительно выше, чем у материала литых штампов, изготовленных из теплоустойчивых сталей, хотя по абсолютной величине и уступают свойствам образцов, вырезанных из деформированных штамповых вставок (табл. 5.11). Тем не менее имеющийся запас пластичности и вязкости материала отливок из стали марки 5ХНМ (В) в сочетании с напряженной конструкцией, которая обусловливает создание сжимающих напряжений в теле вставки, обеспечивают для этой стали даже в условиях усталостного повреждения гравюры практически одинаковую с деформированным инструментом надежность.  [c.84]

Анализ возможности проскоков усталостной трещины при Т = 20° в стали 15Х2НМФА проводили с использованием данных, определенных по экспериментальной зависимости 5с(и) с1 =2,27-10-7 МПа-2 с1 =4,03-10-7 МПа-2 Лд=1,87 (см. рис. 2.9), а также механических свойств, представленных в настоящем разделе, и параметров деформационно-силового равнения (2.106). Результаты расчетов показали, что при Aef <  [c.223]

Рис. 102. Механические свойства сталей состава, % 0,29 С 1,3 Ми 1,09 31 1,58 Ni 1,04 Сг 0,2 Си 0,012 S 0,015 Р 0.010 0 0,010 N (сплошные линии) и 0,29 С 1,08 Мп 1,09 Si 1,58 N1 1,04 Сг 0,2 Си 0,007 8 0,015 Р 0,004 0 0,003 N после ВДП (штриховые лннни), закаленных в масле с 900° С в зависимости от температуры отпуска в течение 2 ч с последующим охлаждением в масле. Глубина надреза образцов на растяжение и выносливость изгибом 0,5 мм, радиус 0.1 мм. угол 60°. Усталостные испытания проводили на машине НУ с частотой 50 Гд на базе 10 циклов [98] Рис. 102. <a href="/info/58648">Механические свойства сталей</a> состава, % 0,29 С 1,3 Ми 1,09 31 1,58 Ni 1,04 Сг 0,2 Си 0,012 S 0,015 Р 0.010 0 0,010 N (<a href="/info/232485">сплошные линии</a>) и 0,29 С 1,08 Мп 1,09 Si 1,58 N1 1,04 Сг 0,2 Си 0,007 8 0,015 Р 0,004 0 0,003 N после ВДП (штриховые лннни), закаленных в масле с 900° С в зависимости от <a href="/info/233686">температуры отпуска</a> в течение 2 ч с последующим охлаждением в масле. Глубина надреза образцов на растяжение и выносливость изгибом 0,5 мм, радиус 0.1 мм. угол 60°. <a href="/info/46098">Усталостные испытания</a> проводили на машине НУ с частотой 50 Гд на базе 10 циклов [98]

Смотреть страницы где упоминается термин Сталь Свойства механические и усталостны : [c.144]    [c.153]    [c.182]    [c.260]    [c.201]    [c.384]    [c.320]    [c.433]    [c.91]    [c.206]    [c.265]   
Детали машин Том 2 (1968) -- [ c.7 , c.11 ]



ПОИСК



Сталь Механические свойства

Сталь Свойства

Сталь Усталостные свойства

Сталь для пружинная — Механические свойства 869, 870 — Усталостные свойства

Сталь пружинная — Механические свойства 618, 619 — Усталостные

Усталостная



© 2025 Mash-xxl.info Реклама на сайте