Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Смещенное рассеяние

Таким образом, рассеяние света на звуковой волне есть смещенное рассеяние частота света при рассеянии изменяется.  [c.130]

Рис. 24. Смещенные (вследствие погрешности настройки станка) кривые рассеяния размеров Рис. 24. Смещенные (вследствие <a href="/info/585943">погрешности настройки станка</a>) кривые рассеяния размеров

Величина смещения центра поля рассеяния от середины поля допуска по абсциссе равна  [c.71]

Как отмечалось выше, вероятность получения брака (в %) определяется 1) для случая смещения центра поля рассеяния от середины поля допуска (по абсциссе) и 2) для случая совмещения центра поля рассеяния с серединой поля допуска (по абсциссе).  [c.74]

Величина смещения центра поля рассеяния [по формуле (19)] равна  [c.74]

Что такое коэффициент точности, коэффициент мгновенного рассеяния, коэффициент смещения, коэффициент запаса прочности по контролируемому параметру технологических систем  [c.77]

Муфты допускают соединение при сборке без осевого смещения. Относительное рассеяние энергии в муфтах достигает 0,5...0,6.  [c.436]

В первом приближении число таких дефектов, вызванных смещениями атомов в кристаллической решетке, пропорционально анергии, переданной веществу нейтронами при их замедлении. Действительно, при малых энергиях атомов отдачи их столкновения с другими атомами являются в основном упругими. Однако с ростом их энергии увеличивается вероятность неупругих столкновений, при которых энергия может передаваться в форме электронного возбуждения или ионизации. Таким образом, часть энергии расходуется не на повреждение кристаллической решетки. Кроме того, отклонение энергетической зависимости радиационной эффективности нейтронов от линейного закона обусловлено колебаниями энергетической зависимости сечений рассеяния, наличием анизотропии рассеяния и неупругого рассеяния нейтронов. Результирующая относительная энергетическая зависимость радиационной эффективности нейтронов 2д( ) в образовании элементарных дефектов для энергий Е> >0,1 Мэе приведена на рис. 9.19, кривая 1 (при нормировке  [c.70]

Для больших энергий электронов среднее квадратическое смещение электрона при многократном рассеянии равно  [c.234]

Анализ этой формулы показывает, что смещение возрастает с увеличением угла рассеяния, достигая максимума в том трудно  [c.448]

Спекл-интерферометрия, также как и голографическая-интерферометрия, где для освещения обычно используют лазерные источники, позволяет измерять смещения (статические и динамические) и исследовать форму оптически грубой поверхности с чувствительностью порядка длины волны света. По.этому новые интерферометрические методы можно рассматривать как перенос методов классической интерферометрии на широкий класс объектов и систем, которые находились ранее за их пределами. Спекл-интерферометрия развивалась на принципах голографической интерферометрии и базируется на спекл-эффекте, который приводит к формированию случайной интерференционной картины, наблюдаемой при рассеянии когерентного света на оптически грубой поверхности.  [c.33]


Спектр рассеянного излучения, кроме первоначальной длины волны о, содержит такл<е смещенную линию с длиной волны X > Ао.  [c.246]

Интенсивность смещенной линии растет с увеличением угла рассеяния.  [c.246]

В рассеянном рентгеновском излучении присутствуют как первичная длина волны Я падающего на вещество излучения, так и длина волны >/, смещенная в длинноволновую сторону. Как показывает эксперимент, величина смещения АЯ=Я —Я не зависит от длины волны рассеиваемых рентгеновских лучей и природы рассеивающего вещества, ио зависит от угла рассеяния и возрастает по мере увеличения этого угла. Зависимость от угла 0 может быть представлена формулой  [c.179]

Ка, молибден) на графите. В спектре рассеянного рентгеновского излучения четко видны две линии — одна имеет такую же длину волны, что и падающее излучение (несмещенная линия отмечена на рисунке цифрой 1), тогда как другая имеет более высокую длину волны (смещенная линия отмечена цифрой 2). По вертикальной оси здесь отложена интенсивность рассеянного излучения, по горизонтальной — длина волны излучения. На рисунке приведены три спектра — для трех углов рассеяния 45, 90, 135°. Видно, что чем больше угол рассеяния, тем больше смещение ISX.  [c.74]

Опыты Комптона дали следующее выражение для смещения длины волны рентгеновского излучения, рассеянного на угол 0  [c.74]

Здесь V.— постоянная, получившая впоследствии название комптоновской длины волны, она равна 2,4-10-12 м. Из (3.3.1) следует смещение не зависит ни от длины волны падающего излучения, ни от свойств материала, на котором происходит рассеяние.  [c.74]

Эффект Комптона на легких атомах можно объяснить, если рассматривать столкновения рентгеновских фотонов с электронами. В этих столкновениях фотон передает электрону часть своей энергии в результате энергия фотона, а значит, и частота излучения уменьшаются, что и объясняет появление смещенной линии в спектре рассеянного рентгеновского излучения. Электрон должен быть сравнительно слабо связан с атомным ядром, его энергия связи должна быть существенно меньше, чем та энергия, которую передает ему при столкновении рентгеновский фотон. Такой электрон можно рассматривать свободным и покоящимся до столкновения.  [c.75]

В легких атомах доля слабо связанных с ядром электронов достаточно велика, поэтому эффект Комптона на таких атомах наблюдается. Смещенная линия в спектре рассеянных рентгеновских лучей имеет в данном случае интенсивность, превышающую интенсивность несмещенной линии, обусловленной рассеянием на сильно связанных электронах. По мере перехода ко все более тяжелым атомам уменьшается  [c.77]

Это хорошо видно на экспериментальных спектрах рассеяния рентгеновских лучей, показанных на рис. 3.10. Все спектры даны для одного и того же угла рассеяния изменяются рассеиватели. Спектры представлены в порядке, отвечающем переходу от легких к более тяжелым атомам. Здесь I — несмещенная линия, 2 — смещенная линия. Видно, как постепенно увеличивается интенсивность несмещенной линии и в то же время падает интенсивность смещенной линии. Смещение АХ остается при этом неизменным.  [c.78]

Рассеяние статическими дефектами решетки. Кроме взаимодействия решеточных волн вследствие ангармоничности межатомных сил, нужно рассмотреть еще их взаимодействие, обусловленное наличием статических дефектов кристаллов, таких, как нарушения периодичности или статические напряжения. Вероятность такого взаимодействия может быть вычислена методом, подобным изложенному в и. 5 энергия возмущения выражается через смещение и, которое в свою очередь выражается через амплитуды решеточных волн (3.7). Члены, квадратичные относительно  [c.235]

Когда измерения были распространены до температур, значительно более низких, чем в, то были найдены следующие разновидности поведения теплопроводности с изменением температуры а) х увеличивается быстрее Т с уменьшением температуры, пока не достигается максимальное значение при более низких температурах к примерно пропорциональна теплоемкости. Это можно объяснить процессами переброса, а при самых низких температурах рассеянием на границах б) х изменяется как или медленнее. С уменьшением температуры достигается максимум при более низких температурах теплопроводность определяется рассеянием на границах. Тепловое сопротивление выше температуры максимума, по-видимому, обусловлено дефектами в) в поликристаллах тепловое сопротивление, обусловленное границами кристаллитов, увеличено и максимум смещен к более высоким температурам.  [c.249]


Берман, Симон, Клеменс и Фрай [20, 39, 40] исследовали теплопроводность кристалла кварца после облучения его нейтронами, а также влияние последующего отжига. Облучение нейтронами вызывает появление добавочного теплового сопротивления, которое оказывается состоящим из двух частей. Первая увеличивается с температурой она была отнесена за счет рассеяния на дефектах, образованных отдельными сместившимися атомами. Вторая часть изменялась как где п лежит между 1 и 3. Эта часть была объяснена рассеянием на больших областях беспорядка, которые возникают, когда отдельный атом получает значительную энергию при столкновении с нейтроном и производит целую лавину смещений. Образование таких лавин предполагается теорией взаимодействия нейтронной радиации с веществом [168, 169].  [c.252]

Придя к этому выводу, Эйнштейн указал и методы наблюдений, которые этот вывод могли бы подтвердить. Если бы удалось наблюдать луч света, идущий от звезды, расположенной на малом угловом расстоянии от Солнца, то этот луч, проходя вблизи Солнца, искривлялся бы под действием сил тяготения Солнца. Это приводило бы к видимому смещению положения наблюдаемой звезды по сравнению с тем положением, в котором звезда видна, когда луч от нее проходит вдали от Солнца. Однако наблюдать звезды, расположенные на малом угловом расстоянии от Солнца, в обычных условиях невозможно, так как свет, посылаемый звездой, оказывается гораздо слабее рассеянного света Солнца, попадающего в телескоп.  [c.385]

Таким образом, мы получили выражение, аналогичное известному в механике консервативных систем, в котором сила есть частная производная скалярного потенциала по смещению (в данном случае по потоку). Следовательно, величина 1з/2 играет роль потенциала силы рассеяния (диссипации) энергии.  [c.203]

Быстрые нейтроны, а-частицы, протоны, осколки деления и т. д. теряют энергию при прохождении через материалы сначала при неупругих столкновениях производят ионизацию, затем при упругих образуют смещения в решетке. Смещение атома в решетке происходит, если энергия, передаваемая при упругом столкновении, больше примерно 25 эв. Хотя большая часть энергии тяжелых заряженных частиц теряется при ионизации, остается достаточно энергии для смещений в решетке. Так как сечение столкновения для заряженных частиц относительна велико, смещения происходят близко одно к другому, нарушая решетку в относительно небольшом объеме. Обычно смещенные атомы в первый момент обладают энергией, достаточной для вторичных смещений, которые в свою очередь могут привести к смещениям третьего и более высоких порядков. Они образуют локализованные области нарушений в кристаллах, называемые пиками. С другой стороны, сечение соударения быстрых нейтронов (высоких энергий) мало и приводит к смещениям, рассеянным, вдоль нути нейтрона в кристаллической решетке. Как и для тяжелых заряженных частиц, в этом случае могут происходить смещения вторичных и более высоких порядков с образованием изолированных областей разу-порядочения. Радиус действия нейтронов много больше радиуса действия тяжелых заряженных частиц, и большая часть их энергии достаточна для образования смещений.  [c.142]

Выраженпя для вероятности и сечения в случае смещенного рассеяния (комбинацнопного рассеяния) аналогичны. Они получаются из (1) и (3) путем замен  [c.122]

Опыты показали, что плазма, образующаяся в области фокуса еще до окончания лазерного импульса, очень сильно поглощает лазерное излучение и здесь возникают чрезвычайно высокие температуры. Измерение интенсивности рентгеновского излучения, которое испускается из области фокуса, дало возможность установить, что здесь развиваются температуры в сотни тысяч, почти миллион градусов (С. Л. Мандельштам, П. П. Пашинин, А. М, Прохоров, Ю. П. Райзер и Н. К. Суходрев, 1965). На опыте было также обнаружено по допплеровскому смещению рассеянного излучения (впервые —С. А, Рамсденом и В, Э. Дейвисом, Phys. Rev. Letters, 1964, 13 7, 227—229), что область плазмы движется навстречу лазерному лучу со скоростью 100 км сек.  [c.263]

При экспериментальном исследовании этого явления, впервые пpoвeдe п oм Комптоном (1922 — 1923), было установлено, что наряду с закономерностями, хорошо объясняемыми электромагнитной теорией (поляризация рассеянного излучения и его интенсивность), наблюдаются эффекты, истолкование которых в рамках этой теории невозможно. Так, например, было обнаружено появление спутника у основной линии, совпадающей по длине волны с облучающими 8.26. Эффект Компто-объект характеристическими лучами. Ока- на на Х-линии молиб-залось, что смещение ДХ этого спутника не  [c.447]

Из приведенного расчета следует, что в результате соударения должны возникнуть свободные электроны, которые часто называют электронами отдачи. Из уравнений (8.64) легко оценить, какую долю энергии рентгеновского кванта унесет этот электрон, и связать изменение относительной интенсивности компонент рассеянного излучения со смещением АЯ. Полученные соотношения находятся в согласии с приведенными опытными данными. Следует заметить, что для не очень жесткого излучения паже при больших углах рассеяния уносимая электроном энергия составляет малую часть энергии фотона, что существенно отличает механизм данного процесса от фотоэффекта, где электрон забирал всю энергию налетающего фотона. Наличие электронов отдачи при рассеянии рентгеновского излучения было Подтверждено опытами Д. В. Скобельцына, наблюдавшего их следы (треки) в камере Вильсона. Остроумное видоизменение методики (помещение камеры во внешнее магнитное поле) позволило измерить энергии электронов.  [c.449]

Другой легко осуществимый случай молекулярного рассеяния света наблюдается при исследовании некоторых растворов. В растворах мы имеем дело со смесью двух (или более) сортов молекул, которые характеризуются своими значениями поляризуемости а. В обычных условиях распределение одного вещества в другом происходит настолько равномерно, что и растворы представляют, собой среду, в оптическом отношении не менее однородную, чем обычные жидкости. Мы можем сказать, что концентрация растворенного вещества во всем объеме одинакова и отступления от среднего флуктуации концентрации) крайне малы. Однако известны многочисленные комбинации веществ, которые при обычной температуре лишь частично растворяются друг в друге, но при повышении температуры становятся способными смешиваться друг с другом в любых соотношениях. Температура, выше которой наблюдается такое смешивание, называется критической температурой смешения. При этой температуре две жидкости полностью смешиваются, если их весовые соотношения подобраны вполне определенным образом. Так, например, сероуглерод и метиловый спирт при 40 °С дают вполне однородную смесь, если взято 20 частей по весу сероуглерода и 80 частей метилового спирта. При более низкой температуре растворение происходит лишь частично, и мы имеем две ясно различимые жидкости раствор сероуглерода в спирте и раствор спирта в сероуглероде. При температурах выше 40 °С можно получить однородную смесь при любом весовом соотношении компонент. С интересующей нас точкй зрения критическая температура смещения характеризует такое состояние смеси, при котором особенно легко осуществляется местное отступление от равномерного распределения. Следовательно, при критической температуре смешения следует ожидать значительных флуктуаций концентрации и связанных с ними нарушений оптической однородности. Действительно, в таких смесях при критической температуре смешения имеет место очень интенсивное рассеяние света, легко наблюдаемое на опыте.  [c.583]


В методе спекл-фотографии предмет освещается единственным световым пучком. Часть пучка, рассеянного поверхностью предмета, собирается с помощью линзы на фотопластинку. Фотозапись на. эту пластинку осуществляется дважды до смещения предмета и после смещения.  [c.34]

Впоследствии экспериментальное изучение дифракционного рассеяния было проведено другими методами в широком интервале энергий и для различных атомных ядер. Результаты опытов (в частности, смещение положения максимумов в зависимости or энергии нейтронов) неизменно подтверждали дифракционный характер явления. Заметим, что дифракционное рассеяние должно наблюдаться (и наблюдалось) и для заряженных частиц, если принять меры к устранению маскирующего эффекта от ре-зерфордовского рассеяния.  [c.350]

Выполняя свою основную функцию по электромеханическому преобразованию энергии, ЭМУ вызывает побочные вторичные явления — тепловые, силовые, магнитные, оказывающие значительное, а в ряде случаев, например в гироскопических ЭМУ [7], и определяющее влияние на показатели объекта. Нагрев элементов ЭМУ определяет его долговечность и работоспособность, а в гироскопии — также точность и готовность прибора. Деформации и цибрации в ЭМУ возникают из-за наличия постоянных и периодически меняющихся сил различной физической природы, в том числе сил температурного расщирения элементов, трения, электромагнитных взаимодействий, инерции, от несбалансированности вращающихся частей, неидеальной формы рабочих поверхностей опор и технологических перекосов при сборке и др. и существенно влияют на долговечность и акустические показатели ЭМУ, а в гироскопии — через смещение центра масс и на точность прибора. Магнитные поля рассеяния ЭМУ создают нежелательные взаимодействия с окружающими его элементами, приводящие к дополнительным потерям энергии, вредным возмущающим моментам, разбалансировке и пр.  [c.118]

При рассмотрении механизма рассеяния предполагалось, что фотон сталкивается со свободным электроном. Для легких атомов и периферических, слабо связанных электронов такое допущение вполне оправдано, так как энергия связи электрона ничтожно мала по сравнению с энергией фотона рентгеновских лучей. Но внутренние электроны, особенно в тяжелых атомах, связаны настолько прочно, что их уже нельзя рассматривать как свободные. Поэтому при столкновении фотон обменивается энергией и количеством движения с атомом в целом. Учет этого обстоятельства объясняет ряд особенностей эффекта Комптона и в первую очередь наличие несмещенной линии, а также соотношение интенсивностей смещенной и несмепщнной линий.  [c.182]

Поскольку при йведенни нримесей в металл величина возрастает, увеличение их содержания приводят как к уменьшению так и к смещению максимума в сторону более высоких температур. Температура, при которой наблюдается максимум, зависит также от дебаевской температуры металла, причем обычно она повышается с возрастанием в. Выше r ai . преобладает рассеяние электронов решеткой ниже этой температуры более сущест-р.еиную роль играет рассеяние примесями.  [c.663]

С классической точки зрения волна, коттэрая удовлетворяет этому дисперсионному соотношению, может иметь любую амплитуду (в пределах выполнения закона Гука). В то же время для колебаний решетки, как и для квантов электромагнитного излучения, характерен корпускулярно-волновой дуализм. Корпускулярный аспект колебаний решетки приводит к понятию фонона, и прохождение волны смещения атомов в кристалле можно рассматривать как движение одного или многих фононов. При этом каждый фонон переносит энергию Ксй, где Ь = Ь/2я= 1,0546-эрг-с Н — постоянная Планка, и импульс Ьк. Теплопроводность, рассеяние электронов и некоторые другие процессы в твердых телах связаны с возникновением и исчезновением фононов, т. е. корпускулярный аспект таких процессов- так же важен, как и волновой. Проявление дискретной (корпускулярной) природы энергии возбуждения в других явлениях зависит от того, насколько велико количество термически возбужденных фононов.  [c.36]

Растяжение или сжатие стержня связано с работой внешних сил на перемещениях их точек приложения. Если нет рассеяния энергии,то вся эта работа переходит в энергию деформации стержня. Выделим из стержня малый элемент поперечными сечениями в точках 2 и 2 + d2. Пусть в результате приложения к этому стержню внешних сил в нем возникли напряжения и деформации Увеличение внешней силы приведет к увеличению напряжения и деформации соответственно на и бвг. Здесь использован знак приращения б функций и е , чтобы можно было отличить это приращение от знака приращения d, так как происхождение этих приращений различно — одно идет от приращения внешних сил, а второе связано с приращением координаты. При этом грани выделенного элемента дополнительно сместятся друг относительно друга на 6ejdz, так как относительная деформация, умноженная на длину деформируемого элемента, дает удлинение этого элемента (сравним 8 = AUI). Таким образом, если левая грань элемента сместилась на А, то правая сместилась на А + 6e d2. Напряжения Ог на этих смещениях произвели работу —Ла А на левой грани, Авг (А + 6e d2) на правой грани.  [c.58]


Смотреть страницы где упоминается термин Смещенное рассеяние : [c.121]    [c.131]    [c.70]    [c.188]    [c.449]    [c.364]    [c.856]    [c.248]    [c.46]    [c.180]    [c.77]    [c.234]    [c.28]   
Взаимодействие лазерного излучения с веществом Курс лекций (1989) -- [ c.121 , c.130 ]



ПОИСК



Дифракционные интенсивности рассеяния на смещенных атомах



© 2025 Mash-xxl.info Реклама на сайте