Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрическая обработка импульсная

Электрическая обработка импульсная 262  [c.435]

Электроэрозионные методы обработки основаны на законах эрозии (разрушения) электродов из токопроводящих материалов при пропускании между ними импульсного электрического тока, К этим методам относят электроискровую, электроимпульсную, высокочастотные электроискровую и электроимпульсную и электро-контактную обработку.  [c.401]

Излучающий вибратор возбуждается импульсным генератором 6. Акустический импульс вводится в контролируемое изделие 7, принимается приемном вибратором и преобразуется им в электрический сигнал. Последний усиливается усилителем 8 и поступает па схему амплитудно-фазовой обработки 9 с выходным индикатором 10. Блок 11 управляет сигнализирующими и регистрирующими устройствами. Изменение механического импеданса Zh изделия в зоне дефекта изменяет амплитуду и фазу колебательной скорости изделия в зоне приема, вызывая регистрируемое аппаратурой изменение амплитуды и фазы принятого сигнала.  [c.299]


Для достижения приведенных выше требований могут применяться любые методы — очистка фильтрами с зернистой загрузкой, в биологических прудах, озонированием, коагуляцией, адсорбцией, импульсными электрическими зарядами, радиационной обработкой, а такн<е их сочетанием.  [c.66]

Существо способа протекание электрического импульсного разряда между электродами приводит к разрушению их поверх-сти. Преимущественно разрушается анод форма и размеры разрушенного участка практически точно воспроизводят форму и размеры катода, что используется в различных операциях направленной, размерной обработки по электроискровому способу.  [c.962]

Электроискровое прошивание полостей и отверстий импульсный электрический разряд, возникающий между торцом электрода и заготовки изделия, вызывает направленное размерное разрушение последней с образованием отверстия, воспроизводящего форму сечения электрода и имеющего размеры, превышающие номинальный размер электрода иа величину боковых зазоров. Обработка производится в жидкой среде при питании импульсным током.  [c.970]

Штамповку импульсным магнитным полем применяют для обжима и раздачи трубчатых заготовок, калибровки трубчатых деталей, формовки рифлений, вырубки плоских деталей, пробивки отверстий в деталях из различных металлов и сплавов, сборки. Для обработки предпочтительны металлы и сплавы с высокой электрической проводимостью. Материалы с недостаточно высокой электрической проводимостью (углеродистые и коррозионно-стойкие стали) деформируют через передающую среду или через спутник — промежуточный материал с высокой электропроводностью, помещаемый на заготовку. Толщина заготовок 1,5 — 2 мм для стали, 1,7 —2,5 мм для латуни, 2 — 3 мм для алюминиевых и магниевых сплавов.  [c.167]

Электроискровая обработка. Электрической эрозии в той или иной степени подвержены все токопроводящие материалы, что определяет возможность использования электроэрозионных методов для обработки всех практически применяемых металлов и сплавов. Механизм процесса эрозии в импульсном разряде для случая электроискровой обработки может быть представлен в следующем виде. Под действием разряда на поверхности электродов возникают вследствие эффекта бомбардировки заряженными частицами плоские источники тепла. Нестандартный процесс распространения тепла от этих источников вызывает локальное плавление и частичное испарение металла в зоне действия источника.  [c.498]


Электроискровая обработка металлических поверхностей основана на использовании импульсных электрических разрядов между электродами в газовой среде. Сущность технологии восстановления поверхностей состоит в том, что в промежутке между металлическими электродами разрушается материал анода, а продукты эрозии переносятся на катод (заготовку).  [c.379]

Электроискровая разновидность электроэрозионной обработки с применением релаксационной конденсаторной схемы. При возникновении электрического импульсного разряда между электродами  [c.18]

Для формообразующих операций электроискровая обработка широко применяется. В этом случае необходимо обеспечить как строго определенные длительность и амплитуду разрядных импульсов, так и точное регулирование искрового (межэлектродного) зазора. Разрядные импульсы, генерируются в основном двумя способами либо при помощи импульсного вращающегося генератора, обеспечивающего получение стабильных импульсов напряжения требуемой длительности, частоты и амплитуды, либо при помощи релаксационной цепи, в которой имеется накопительная емкость релаксационной цепи, заряженная от источника постоянного тока до такого напряжения, при котором между деталью и инструментом произойдет искровой разряд. В обоих случаях оба электрода (деталь и инструмент) погружаются в диэлектрическую жидкость, как правило, керосин. При увеличении напряжения между электродами растет напряженность электрического поля в диэлектрике (рабочей среде). Происходит электрический пробой диэлектрика, последний ионизируется, образуется плазменный канал с высокой электрической проводимостью. Температура в канале плазмы находится в пределах 10 ООО—50 000° С.  [c.312]

Этот период развития отпаянных ЛПМ характеризуется поиском и созданием новых конструктивных и технологических решений, эффективных электрических схем накачки с целью повышения гарантированной (минимальной) наработки АЭ до 1000 ч и выше, средней мощности излучения до 50-100 Вт при практическом КПД не менее 1%, импульсной мощности излучения до 250-500 кВт, энергии в импульсе до 5-10 мДж. Проведены исследования пространственных и временных характеристик выходного излучения ЛПМ с такими уровнями мощности для разных оптических систем как в режиме генератора, так и в режиме усилителя мощности. Разработка мощных и надежных ЛПМ с высоким качеством излучения стимулировалась потребностью создания отечественных технологических установок для разделения изотопов, для высокопроизводительной прецизионной обработки материалов электронной техники, а также для создания медицинских установок [130, 131, 133-174.  [c.25]

Электрохимическая обработка пера турбинных и компрессорных лопаток охватывает практически весь размерный диапазон этого класса деталей от малых и средних (ЭХО-1, ЭГС-100) до крупногабаритных (МЭ-57). Повышение точности копирования профиля пера обеспечивается как жесткой стабилизацией гидравлических и электрических параметров технологического процесса, так и применением импульсно-циклической обработки, что позволяет перейти к обработке на малых МЭЗ (до 0,02 мм), гарантирующих точность копирования до 0,05. .. 0,1 мм (ЭХС-10А).  [c.685]

Импульсные ионизационные камеры наиболее удобно использовать в том случае, когда энергия частиц достаточно велика (осколки деления или а-частицы большой энергии). Импульсы, вызываемые отдельными частицами небольшой энергии, однако, являются столь малыми, что их довольно трудно наблюдать и точно измерить при наличии фона шумов в электронных лампах, обусловленных случайными флуктуациями в последних. В таких случаях импульсы частиц могут быть усилены в самой ионизационной камере путем использования сильных электрических полей для получения дополнительной ионизации в газе камеры, обусловленной электронами, рожденными первичной заряженной частицей. В камерах с плоскими электродами (типа, рассмотренного в предыдущем разделе) необходимое однородное поле требует чрезвычайно осторожной обработки электродов кроме того, напряжения, необходимые для создания таких сильных электрических полей, очень высоки.  [c.187]

Безреагентные методы включают радиационную обработку Y-излучением, обработку импульсным электрическим разрядом, электрокоагуляцией. Эффективность этих методов в меньшей степени зависит от степени загрязнения воды, они характеризуются высокой пр.оникающей способностью, не ухудшают-коррозионные и накипеобразующие свойства воды. Однако, несмотря на перспективность, распространение их сдерживается отсутствием установок большой производительности.  [c.59]


Получение активных атомов это их ионизация. Чем выше температура, тем легче атом отдает свои электроны другим (лучше электропроводность). Поэтому основным фактором, стимулирующим ионизацию, является увеличение температуры при ХТО. Однако хорошо известны и другие приемы, например, использование постоянного тлеющего разряда между деталью (катод) и специальным анодом в пространстве насыщающей среды, обдув детали электрически ионизированной струей насыщающего газа, обработка импульсными электрическими разрядами, обработка в поле излучения и т. д. Такие электрофизические приемы высокоэффективны, но достаточно сложны и дорогостоящи. Существуют также химические катализаторы процесса активации. Так, при цементации деталей в твердом карбюризаторе для активации процесса получения ионизированного углерода к углю добавляют 10—30 % углекислых солей (карбонатов) ВаСОз, N32003, К2СО3. Интенсификация цементации из газовой среды достигается путем добавки аммиака к технологическим газам. Ионизация атомарного вещества необходима в первую очередь для их адсорбции — осаждения на поверхность обрабатываемой детали.  [c.198]

В заключение необходимо отметить, что на процесс электрической эрозии влияет большое число факторов. В числе их, наряду с технологическими характеристиками процесса (электрические данные импульсных генераторов, режимы обработки), большую роль играют физико-механические и тепловые константы материала инструмента (электрода) и обрабатываемой детали. В настоящее время еще нет общей теории электроэро-зионного разрушения материалов, однако элементы физической теории износа и большое количество экспериментальных данных позволяют управлять процессом и использовать его для нужд практики.  [c.36]

Для механической обработки используют твердотелые ОКГ, рабочим элементом которых является рубиновый стержень, состоящий из оксидов алюминия, активированных 0,05 % хрома. Рубиновый ОКГ работает в импульсном режиме, генерируя импульсы когерентного монохроматического красного цвета. При включении пускового устройства ОКГ электрическая энергия, запасенная в батарее конденсаторов, преобразуется в световую энергию импульсной лампы. Свет лампы фокусируется отражателем на рубиновый стержень, и атомы хрома приходя в возбужденпое состояние. Из этого состояния они могут возвратиться. в нормальное, излучая с(ютоны с длиной волны 0,69 мкм (красная флюоресценция рубина).  [c.414]

ДАТЧИК - элемент устройства, преобразующий информацию о физической величине в сигнал, удобный для использования и обработки в системах автоматического контроля и управления. Наиболее распространены Д с выходными сигналами электрической природы напряжение, ток. частотно- и фазомо-дулированные гармонические и импульсные колебания, а также датчики дискретных сигналов.  [c.15]

Радиометрия — это метод получения информадии о внутреннем состоянии объекта контроля с регистрацией выходящего пучка излучения в виде электрических сигналов. Схема данного метода контроля приведена на рис. 6.17. В радиометрии используют в основном два метода среднетоковый и импульсный, которые различают способами регистрации излучения и электронной обработки информации. Контроль осуществляется сканированием объекта узким пучком. Плотность потока выходного пучка при наличии дефекта меняется и преобразуется в электрический сигнал, пропорциональный плотности пучка. В среднетоковом методе используют сцинцилляционные кристаллы, которые выдают сигнал в виде среднего тока, а в импульсном — полупроводниковые счетчики, которые регистрируют излучение в виде последовательности импульсов двумя независимыми полупроводниковыми детекторами.  [c.164]

Структуры поверхностного слоя, образованного в результате импульсной обработки, имеют пониженный минимум емкости двойного электрического слоя металл-среда. Белые слои, повышая перенапряжение катодной и анодной сопряженных реакций, заметно увеличивают тафелевскую константу и уменьшают ток коррозии в связи с увеличением степени локализации валентных электронов и усилением ковалентности связи желеэо—углерод, которое наступает в итоге импульсного воздействия высоких температур и давлений при формировании структур в поверхностном слое. При этом рост содержания углерода в белом слое из-за улучшения его качества приводит к понижению емкости двойного электрического слоя и увеличению коррозионной стойкости стали.  [c.116]

В самые последние годы начал осваиваться совершенно новый способ обработки материалов — электрогидравлический (изобретение Л. А. Юткина). С помощью этого способа электрическая энергия трансформируется в механическую в жидкой среде (чаще воде) без промежуточных звеньев и с достаточно высоким к. п. д. За счет гидравлического удара, создающегося при высоковольтном импульсном разряде, можно вести разнообразные механические процессы взрывание крепчайших пород, их дробление, очистку литья от формовочной земли, штамповку, получение коллоидов металлов, уплотнение намывного грунта, выделение металла из шлаков и многие другие.  [c.127]

На основе литературных данных обобщены результаты исследований магнитных, электрических и механических свойств сталей с содержанием углерода более 0,3%. Показано, что углеродистые и легированные стали имеют неоднозначность между магнитными и механическими саойства-ми. В интервале температур низкого отпуска (до 400 °С) вопрос о контроле качества термообработки может быть решен методами коэрцитиметрии. Перспективным для решения вопроса об однозначном контроле качества термической обработки этих сталей в широком диапазоне температур отпуска (до 650 °С) может быть импульсно-локальный метод с применением приборов тина ИЛК.  [c.233]


Рассмотренная группа генераторов относится к числу простейших. Их работа определяется во многом состоянием межэлектрод-ного промежутка. Поскольку после разряда конденсатора межэлек-тродный промежуток не сразу восстанавливает свою электрическую прочность, увеличивать частоту следования импульсов без опасности перехода импульсного разряда в дугбвой здесь нельзя. Вследствие этого производительность процесса на режимах, когда обеспечиваются высокая точность и низкая шероховатость обработки, оказывается весьма малой. Этот недостаток устранен в генераторах, в которых, хотя в качестве накопителей энергии также использованы конденсаторы, однако роль коммутатора выполняет не меж-электродный промежуток, а электронные, ионные и полупроводниковые приборы, обеспечивающие более четкую отработку каждого импульса и практически исключающие несрабатывание.  [c.150]

В одном из устройств для обработки электрического сигнала используется следующая электрическая схема (рис. 155). Сигнал с фотодетектора 5 поступает на триггер Шмитта 6 и далее на генератор строб-импульсов 7. Ширина строб-импульса равна временному интервалу между пиками дифракционной картины. Далее строб-импульс поступает на импульсный генератор 10 и счетчик 9, подсчитывает импульсы импульсного генератора за время действия строб-импульса, длительность которого пропорциональна диаметру изделия. Сканирующий строб-импульс необходим для подсчета числа импульсов в определенном числе разверток. Использование многократного количества разверток увеличивает точность измерения, ко при этом увеличивается и время измерения.  [c.262]

Электроискровая обработка металлов основана на разрушении их действием импульсного электрического разряда, возникающего при прохождении элек трического тока через диэлектрик. Нарушение электрической прочности диэлектрика проходяш,им через него током называют пробоем.  [c.649]

Проводящие покрытия. Для облегчения зажигания ламп (люминесцентных, импульсных) производится покрытие наружной по1ве рхности колб проводящими лаками. Зажигающая полоса должна иметь небольшое электрическое сорротивление, незначительную зависимость сопротивления от температуры. В качестве клеящей основы могут быть использованы нитроцеллюлозные лаки, бакелитовый лак и кремнийорганические лаки до рабочей температуры 150 °С. Так, в качестве проводящей основы используется посеребренный медный порошок (разме р зерна 20—30 мкм). Серебрение порошка проводится из раствора азотнокислого серебра. Перед сб ребрением медный порошок обезжиривают и очищают от окислов обработкой в серной кислоте или хлористом аммонии и высушивают. Для нанесения используется состав 45 см бакелитового лака (вязкость 1,75—  [c.257]

Электроэрозионная обработка ЭЭО является разновидностью электрофизической обработки. При ЭЭО изменение формы, размеров и качества поверхности происходит под действием электрических разрядов, возникающих при пропускании импульсного электрического тока в зазоре шириной 0,01...0,05 мм между электродами — заготовкой и инструментом. Под действием электрических разрядов материал заготовки плавится, испаряется и удаляется из межэлектродного промежутка в жидком или газообразном состоянии. Такие процессы разрушения электродов (заготовок) называются электрической эрозией. Промежуток между заготовкой и электродом заполняют диэлектрической жидкостью, такой как минеральное масло. При достижении на электродах напряжения, равного напряжению пробоя в среде, между электродом и заготовкой образуется канал проводимости, по которому осуществляется импульсный дуговой или искровой разряд. Плотность тока в канале проводимостидостигает8000...10 ОООА/мм а время разряда — 10 ... 10 с. При этих условиях на поверхности электрода-заготовки температура возрастает до 10 ООО...12 ООО С, что приводит к расплавлению и испарению элементарного объема металла. На обрабатываемой поверхности образуется лунка, затем пробой происходит в другом месте, и так продолжается до тех пор, пока не снимается требуемый слой металла. В результате расстояние между электродами возрастает настолько, что пробой при заданом напряжении импульса становится невозможным, и наступает момент прекращения обработки. Поэтому для продолжения обработки электроды необходимо сближать до тех пор, пока не будет достигнут заданный размер заготовки.  [c.541]

Как и в случае СОг-лазера, СО-лазер работает с продольной прокачкой газовой смеси, в импульсном поперечном электрическом разряде с предыонизацией электронным пучком, а также при газодинамическом возбуждении. Промышленное производство СО-лазеров пока сдерживается необходимостью его работы при низких температурах. Однако недавно были построены СО-лазеры, работающие при температуре, близкой к комнатной, и сохраняющие высокий дифференциальный КПД (20—30 %), и теперь СО-лазеры всерьез рассматриваются в качестве реального источника для приложений в медицине и обработке материалов.  [c.379]

Магнитоимпульсная - обработка (МИО) основана на импульсном пластическом формообразовании токопроводящих металлов и сплавов в результате непосредственного преобразования электрической энергии в механическую работу в зоне формообразования (табл. 32, 33).  [c.151]

Большинство этих методов характеризуется наличием промежуточных превращений электрической энергии в другие виды (световую, механическую) вне зоны обработки. В их числе электронно-лучевая обработка материалов обработка когерентным световым лучом большой мощности (с помощью квантово-оптических генераторов) магнитное формование— импульсное формоизменение силами магнитного поля электрофо ретические методы плазменная обработка электрогидравлические методы и ряд других, широко изучаемых и осваиваемых в настоящее время.  [c.15]

В таблицах и фигурах гл. Vill приводятся сведения, относящиеся к физике электрической эрозии и свойствам различных элементов, связанных с воздействием на них импульсных электрических разрядов. Эти сведения могут служить исходными для различных оценочных сопоставлений электрических методов обработки при анализе полученных экспериментальных дан ных, при подборе оптимальных режимов и Для различных других целей в процессе проведения опытно-производственных или научно-исследовательских (работ.  [c.251]

Комбинированная ультразвуковая и электроим-пульсная обработка. Введение ультразвуковых колебаний н зону обработки электрическим импульсным разрядом улучшает выброс продуктов разрушения, стабилизирует частоту разрядов и повышает производительность процесса  [c.330]

Расширение возможностей и повышение производительности шлифовальных и заточных станков достигается применением абразивных электрофизических (АЭФО) и электрохимических (АЭХО) способов обработки. Электроэрозионная обработка основана на физическом явлении, заключающемся в направленном выбрасывании электронов под действием происходящего между электродами электрического импульсного разряда (рис. 210, а). При сближении двух электродов 1, 2 я подключении к ним напряжения, достаточного для пробоя образовавшегося межэлектродного промежутка, возникает электрический разряд в виде узкого проводящего столба с температурой, измеряемой десятками тысяч градусов. У основания этого столба наблюдается разрушение (оплавление, испарение) материала электродов. Жидкая среда обеспечивает возникновение  [c.292]


Электрохимическая обработка материалов основана на химических процессах, возникающих в результате прохождения электрического тока через цепь, образованную проводниками (электродами) 1—3 и находящейся между ними проводящей ток жидкостью (электролитом). При электрохимической обработке происходит растворение и удаление слоя металла с заготовки (рис. 210, ж) и образование химических соединений. Поддержание заданной плотности тока одно из условий правильного ведения процесса. Скорость растворения находится в прямой зависимости от плотности тока. Большинство материалой хорошо обрабатываются на установках, питаемых постоянным током. Однако при обработке коррозионно-стойкой стали целесообразно применение импульсного тока. Процесс остается устойчивым, а шероховатость поверхности улучшается при замене постоянного тока однополупериодным выпрямленным током. Широко применяют в качестве электролита раствор хлористого натрия ввиду его низкой стоимости и длительной работоспособности Электропроводность и вязкость оказывают влияние на характер протекания и результаты процесса.  [c.298]

В последнее время в промышленности получил распространение электрогидравличе кий метод обработки, основанный на возбуждении импульсного высоковольтного разряда в среде жидкости. В результате этих импульсов возникают сверхвысокие давления жидкости также в виде импульсов, при фокусировании которых на заданный участок поверхности производится обработка. Мощность и длительность импульсов определяется параметрами электрической схемы.  [c.326]

Электрогидравлический метод обработки в последнее время в промышленности получил большое распростра- нение. Он основан на возбуждении импульсного высоковольтного разряда в среде жидкости. В результате этих импульсов возникают сверхвысокие давления жидкости также в виде импульсов, при фокусировании которых на заданный участок поверхности производится, обработка. Мощность и длительность импульсов определяются параметрами электрической схемы. Этот метод прйменяют для наклепа поверхностей металлических заготовок, прошивания отверстий в неметаллических хрупких материалах и т. п.  [c.356]

Электроэрозионные методы основаны на использовании явления электрической эрозии — направленного локального раз-рупюния электропроводягцих материалов в результате теплового действия импульсных электрических разрядов между электродом-инструментом и электродом-заготовкой. Из этих методов (см. рис. 11.1) наиболее широкое развитие получила электроисковая обработка, открытая советскими учеными Б. Р. и Н. И. Лазаренко в 1943 г. Электрод-инструмент 1 (рис. 11.2) и обрабатываемая заготовка 2 погружены в рабочую жидкость и соединены с генератором электрических импульсов 3. Все процессы, вызывающие обработку, протекают в межэлектродном промежутке (МЭП)А. При подводе к электродам электрического импульса наибольшая электрическая напряженность будет между наиболее близкими микровыступами происходит пробой промежутка, возникают проводимость и импульсный разряд, сопровождающийся очень высокой температурой (до 10 С), вызывающей плавление и испарение металлов. Количество теплоты, выделяющейся на электродах, неодинаково и зависит от их полярности и энергии импульсов. Заготовку 2 соединяют с тем полюсом, на котором выделяется большая доля теплоты. В процессе обработки электрод-инструмент 1 перемещается  [c.207]


Смотреть страницы где упоминается термин Электрическая обработка импульсная : [c.99]    [c.250]    [c.96]    [c.389]    [c.191]    [c.59]    [c.297]    [c.105]    [c.561]    [c.556]    [c.309]    [c.316]   
Защита от коррозии на стадии проектирования (1980) -- [ c.262 ]



ПОИСК



V импульсная

Электрическая обработка



© 2025 Mash-xxl.info Реклама на сайте