Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозия давления

С целью уменьшения коррозии давление в котельных элементах должно быть таким, чтобы температура насыщенного пара была выше точки росы в газах. В таких котлах, как правило, нет экономайзеров и воздухоподогревателей.  [c.190]

Поверхность. Поверхность испытываемого образца не должна обладать характеристиками, не соответствующими характеристикам его внутренней части, вызванными неправильной эксплуатацией, шероховатостью поверхности, коррозией, давлением.  [c.22]


Перспективным решением задачи использования низкокачественных сернистых углей является предварительная газификация в псевдоожиженном слое под давлением как стадия их подготовки к сжиганию в топках мощных тепловых электростанций [1]. Путем газификации угля, протекающей при температуре 500—1500 °С, могут быть получены очищенные от серы горючие газы, состоящие из СО, На, СН4, высших углеводородов, а также СО2, N2 и Н2О. Прямое сжигание этих газов в котлах обычных паросиловых установок позволяет резко сократить выбросы в атмосферу двуокиси серы, а также использовать их в камерах сгорания ГТУ, работающих в комбинированных установках, повысить к.п.д. выработки электроэнергии до 45—50%. Для практической реализации процесса газы должны быть очищены, чтобы не вызывать коррозии и эрозии турбин.  [c.28]

Основными видами термической обработки являются отжиг и закалка. Операцию отжига используют для повышения технологических свойств при производства деталей из тугоплавких металлов. Отжиг снижает прочностные характеристики и в несколько раз повышает пластичность материала, что облегчает дальнейшую обработку давлением (ковка, протяжка, прокатка и т. д.). Наличие пор в материалах делает их чувствительными к окислению при нагреве и к коррозии при попадании закалочной жидкости в поры при закалке. В качестве охлаждающих сред необходимо выбирать жидкости, не представляющие опасности с точки зрения коррозии в процессе хранения и эксплуатации закаленных деталей. В некоторых случаях детали из железного порошка подвергают науглероживанию методами химикотермической обработки — нагреву в ящиках с карбюризатором или в газовой науглероживающей атмосфере. Процесс насыщения углеродом протекает значительно быстрее вследствие проникания газов внутрь пористого тела.  [c.425]

Если скорость общей реакции взаимодействия металла с газовой фазой определяется скоростью процесса диффузии в слое образующего продукта коррозии, то зависимость скорости окисления от давления окисляющего газа может быть совершенно иной и разной для разных поверхностных соединений.  [c.130]

Коррозия металлов с кислородной деполяризацией в большинстве практических случаев происходит в электролитах, соприкасающихся с атмосферой, парциальное давление кислорода в которой рог = 0,21 атм. Следова-  [c.231]

Коррозия металлов с водородной деполяризацией в большинстве случаев имеет место в электролитах, соприкасающихся с атмосферой, парциальное давление водорода в которой =  [c.249]


К внешним факторам электрохимической коррозии металлов относятся факторы, связанные с составом коррозионной среды и условиями коррозии температура, давление, скорость движения среды, внешняя поляризация и др.  [c.341]

Основные причины ускоряющего влияния давления на электрохимическую коррозию металлов следующие а) изменение растворимости газов, участвующих в коррозионном процессе (см. рис. 161), например ускорение коррозии стали в водных растворах при повышении давления воздуха, кислорода или углекислоты  [c.357]

Кинетику процесса газовой коррозии металлов можно также изучать с помощью простой манометрической установки, измеряя с помощью манометра изменение давления в замкнутом сосуде, в который помещен исследуемый образец металла. На рис. 323 показана схема простой манометрической установки. Применяют  [c.440]

Простой метод коррозионных испытаний металлов в электролитах, например, в кислотах, при высоких температурах и давлениях состоит в выдержке исследуемого образца металла, помещенного в запаянную ампулу из термостойкого стекла с налитым в нее электролитом, при заданной температуре в термостатированном шкафу. Для предупреждения разрыва запаянных ампул вследствие образования в них паров электролита и накопления газообразных продуктов коррозии ампулы помещают в контейнеры, изготовленные из нержавеющей стали, у которых для создания противодавления пространство между стенкой и ампулой заполняют водой. Более совершенным методом коррозионных испытаний в электролитах при высоких температурах и давлениях является проведение их в специальных автоклавах (рис. 329).  [c.445]

Скорость коррозии образцов углеродистой стали в зависимости от давления и температуры водной среды  [c.82]

Рис. 115. Продолжительность инкубационного периода водородной коррозии стали марки 20 (штрих-пунктирная линия) и стали марки ЗОХМА (сплошная линия) при различных температурах и давлениях Рис. 115. Продолжительность <a href="/info/1660">инкубационного периода</a> <a href="/info/106873">водородной коррозии</a> <a href="/info/277022">стали марки</a> 20 (<a href="/info/232486">штрих-пунктирная линия</a>) и <a href="/info/277022">стали марки</a> ЗОХМА (<a href="/info/232485">сплошная линия</a>) при различных температурах и давлениях
Высокотемпературная сероводородная коррозия в нефтяной промышленности представляет особую опасность для углеродистых сталей в связи с тем, что оборудование каталитического и термического крекинга подвергается воздействию также и водорода в условиях повышенных давлений. В этих условиях является весьма эффективным применение высокохромистых или хромоникелевых сталей.  [c.156]

Рис. 122. Скорость коррозии хромистых сталей в парах нефти при разном содержании сероводорода, 635 С и избыточном давлении водорода 123 Мн/м в зависимости от содержания хрома Рис. 122. <a href="/info/39683">Скорость коррозии</a> <a href="/info/36274">хромистых сталей</a> в парах нефти при разном содержании сероводорода, 635 С и <a href="/info/415">избыточном давлении</a> водорода 123 Мн/м в зависимости от содержания хрома
Смазочные масла по сравнению с консистентными смазками, имеют следующие преимущества меньший коэффициент трения и большую стабильность свойств способны проникать в узкие зазоры, обеспечивают лучший отвод теплоты и удаление продуктов износа допускают смену смазки без разборки опор. Однако жидкие смазки требуют более сложных уплотнений и регулярного наблюдения за подачей. Консистентные смазки хорошо выдерживают высокие давления и колебания температуры, лучше предохраняют опоры от коррозии.  [c.448]


Латуни характеризуются хорошим сопротивлением коррозии, электропроводностью, достаточной прочностью и особо хорошими технологическими свойствами. Применяют литейные латуни, обладающие высокими литейными качествами, и латуни, обрабатываемые давлением, допускающие обработку в холодном состоянии и  [c.35]

Борьбу с этим очень опасным видом коррозии ведут а) применяя металлы, менее склонные к коррозионному растрескиванию (например, малоуглеродистую сталь, содержащую 0,2% С, с фер-рито-перлитной структурой) б) используя коррозионностойкое легирование (например, сталей хромом, молибденом) в) проводя отжиг деформированных металлов для снятия внутренних напряжений (например, отжиг деформированных латуней) г) создавая в поверхностном слое металла сжимающие напряжения (например, путем обдувки металла дробью или обкаткой роликом) д) тщательной (тонкой) обработкой поверхности для уменьшения на ней механических дефектов е) проводя обработку коррозионной среды (например, питательной воды котлов высокого давления) ж) вводя в электролит замедлители коррозии з) нанося защитные покрытия  [c.335]

Химическая конденсация влаги — продолжение развития адсорбциснной конденсации в виде химического взаимодействия продуктов коррозии с водой с образованием гидратированных соединений, которым соответствует пониженное давление насыщен-  [c.375]

На рис. 365 приведена схема подвески образцов при их испытании в газах колонки синтеза меламина, работающей при высоких температурах и давлении с частичной конденсацией влаги на ее стенках. Образцы подвешены на фторопластовых нитях к проволочному каркасу из нержавеющей стали в двух позициях, одна из которых соответствует зоне максимальной коррозии металла стенок колонки.  [c.470]

К внешним факторам электрохимической коррозии металлои относятся факторы, связанные с природой и характером коррозионной среды и внешними условиями — температурой, давлением, движением раствора и т. д.  [c.69]

Химические, нефтехимические и другие процессы часто осуществляются при высоких давлениях. Основной npmimioii вли я-ния давления па процессы электрохимической коррозии металлов является и31 геиеиие растворимости газов, участвующих в  [c.82]

Повышение давления во многих случаях значительно усиливает коррозию ме-KOTopiiix мета.тлов и сплавов при одио-времеииом иовышении температуры, как это иа(блюдается, наиример, ири действии водорода па углеродистые стали или при карбонильной коррозии.  [c.82]

С, сернистый газ, двуокись азота, пары серы — около 500° С, сероводород — при еще более высоких температурах. Считается, что водород не вызывает коррозии углеродистых сталей при обыч1П11Х температурах и давлении. При температурах 200— 300° С и давлениях 30 Мн м он становится весьма агрессивным.  [c.149]

Помимо указанных (ракторов — повышенных давлений и температуры, увеличению скорости газовой коррозии часто еще способствуют напряженное состояние металла, эрозия п т. п. Ниже рассматриваются некоторые особые случаи коррозии металлов в указанных условиях.  [c.149]

На рис 15 приведены апачения продолжительности инкубационных периодов водородной коррозии (времени до начала 1юдородной коррозии) для углеродистой слали и стали ЗОХМА при различных температурах и давлениях водорода.  [c.150]

Скорость водородной коррозии в значительной степени зависит от глубины обезуглероживания стали. Глубина обезуглероживания, в свою очередь, зависит от многих факторов и, в частности,, от давления водорода, температуры, толщины металла, времени выдержки и др. На рис. 116 и 117 ириве,дены данные по обезуглероживанию стали. 35 при различных. давлениях и тем-п( ратурах. Общее для все.х полученных кривых — это наличие какого-10 инкубационного периода, во время которого обезуглероживание стали не наблюдается или оно незначительно. Продолжительность этого периода зависит от температуры и давления водорода.  [c.150]

Как показали работы Ю. И. Арчакова, с увеличением давления до 80 Мн м при температуре 600° С хромистые стали устойчивы к водородной коррозии только при содержании в них хрома свыше 8,4% (рис. 119). Водородоустойчивыми в этих условиях являются также стали с 0,16% С и 1,97% V и с 0,16% С и 0,94% Т1.  [c.152]

Не подвержены карбонильной коррозии хромистые стали с содержанием 30% Сг, хромоникелевые стали с содержанием 23% Се и 20% N1 и марганцевые бронзы при температуре до 700° С и давлениях до 35 Л1к/лС. При более низких параметрах пригодны менее легирова[[ные стали, как типа Х18Н9, так и содержащие 13—17% Сг.  [c.154]

На рис. 122 показано влияние содержания хрома на скорость коррозии хромистой стали при П35°С в парах нефти, содержащей различные количества сероводорода при 11,1 об.% водорода и давлении 1,23 Мн1м . Из приведенных данных видно, что скорость коррозии хромистых сталей увеличивается с ростом концентраций сероводорода в парах нефти и понижением содержания хрома в сталях. Скорость коррозии хромистых сталей в парах серы в интервале температур 500—800° С также увеличивается с ростом температуры и понижением соде()жания хрома (рис. 123).  [c.156]

Савицкая О. С. Карбонильная коррозия металлов и сплавов ври высо-ки. температурах н давлениях. .Химическое и нефтяное машипостроение , 1965, № а.  [c.158]

Мсжкристаллитиая коррозия особенно опасна для аппаратов, детален н конструкций, эксплуатируемых в условиях приложения механических нагрузок,— аппараты высокого давления, автоклавы и др. В этих случаях разрушение металла может наступить внезапно, не изменяя заметно внешнего вида металла, так как механические нагрузки способствуют сосредоточенному коррозионному разрушению металла но граинцам кристаллитов.  [c.163]


Титан стоек в азотной кислоте любых концентраций при температурах вплоть до температуры кипения и достаточно высоких давлениях. Скорость коррозии титана в растворах азотной кислоты с течением времени резко снижается вследствие образования пленки ТЮг, обладающей защитными свойствами. Скорость кор))озии титана и его сплавов в дымящей азотной кислоте обычно не превышает 0,1 лш/гоб. Однако в литературе отмечаются случаи взрывов при нспытапин титана в дымящей азотной кислоте, которым предшествовала скорость коррозии от 10 до 100 мм1 год. Продукты, образовавшиеся в результате этого вида межкристаллитной коррозии, представляют собой частицы титана с сильно развитой активной поверхностью и обладают пирофорными свойствами они чувствительны к нагреву, удару и электрической искре.  [c.281]

Давление среды ускоряет электрохимическую коррозию металлов из-за изменения растворимости газов, участвующих в коррозионном процессе ( например кислорода), а так хе из-за появления механических напряхений в металле.  [c.42]

Отжиг для разупрочнения сплавов (полный отжиг), проводят при 350—430 Ч] с выдержкой I—2 ч. При этих температурах происходит полный распад пересыщенного твердого раствора и коагуляция упрочпяюитих фаз. Скорость охлаждения во избежание закалки не должна превышать 30 °С/ч. После отжига сплав имеет низкие значения временного сопротивлеиия, удовлетворительную пластичность и высокую сопротивляемость коррозии под напряжением. Отожженный материал способен выдерживать холодную обработку давлением с высокими степенями деформации.  [c.327]

Сплавы ле1 ко обрабатываются давлением (штамповка, гибка и т. д.), хорошо свариваются и обладают высокой коррозионной стойкостью. Обработка резанием в отожженном состоянии затруднена. Применяются сплавы для сварных и клепаных элементов конструкций, испытывающих сравнительно небольшие нагрузки и требующих высокого сопротивления коррозии. Так, сплавы АМц, АМг2, АМгЗ нашли применение при изготовлении емкостей для жидкости (баки для бензина), трубопроводов, палубных надстроек, морских и речных судов, в строительстве (витражи, перегородки, двери, оконные рамы и др.).  [c.332]

Алюминиевые бронзы хороню сопротивляются коррозии и имеют высокие механические и технологические свойства бронзы легко обрабатьпшются давлением в горячем состоянии, а ири содержании до 7 8 % А1 — и в холодном. Вследствие хороших литейных свойств из них можно получить разнообразные отливки. Однако следует  [c.352]

Бронзы по основному, кроме меди, компоненту разделяют на оловянные, свинцовые, алюминиевые, бериллиевые, крем-нист1з1е и др. Бронзы, как правило, обладают высокими антифрикционными свойствами, хорошим сопротивлением коррозии, универсальными технологическими свойствами (имеются литейные бронзы и бронзы, обрабатьжаемые давлением,- алюминиевые, часть оловянных, бериллиевые, кремнистые). Все бронзы хорошо обрабатываются резанием. Указанные свойства бронзы позволяют широко применять их I) в узлах трения — подшипниках скольжения, направляющих, червячных и винтовых колесах, гайках ходовых и грузовых винтов 2) в водяной, паровой и масляной арматуре.  [c.34]


Смотреть страницы где упоминается термин Коррозия давления : [c.10]    [c.134]    [c.78]    [c.82]    [c.83]    [c.148]    [c.149]    [c.152]    [c.42]    [c.326]    [c.346]    [c.202]    [c.147]   
Коррозия химической аппаратуры и коррозионностойкие материалы (1950) -- [ c.64 ]



ПОИСК



Аколъзин, А. В. Ратнер. Мешкристаллитная коррозия металла барабанов и труб котлов высокого давления

Влияние температуры и давление на скорость коррозии металлов и электродных процессов

Влияние температуры, давления, скорости движения коррозионной среды на скорость коррозии

Газовая коррозия металлов в атмосфере аэот в водороде при повышенных температурах и высоких давлениях

Глубокая очистка конденсатов от мелкодисперсных продуктов коррозии конструкционных материалов на ТЭС сверхкритического давления

К вопросу поведения продуктов коррозии меди в проточной части турбин сверхкритического давления Мартынова, Б. С. Рогацкин, Куртова, Ю. Ф. Самойлов (Московский энергетический институт, Тулэнерго)

Коррозия и защита оборудования для поддержания пластового давления

Коррозия котлов высокого давления и методы борьбы с ней

Коррозия при высоких температурах и давлениях

Коррозия, вызываемая водой под давлением

Поковки штампованные баллонов высокого давления — Изготовлени припуски 2 — 291, 292 — Коррозия — Предотвращение 2 328 , 329 — Чертежи — Составление 2 — 291—293 — Чистота

Предупреждение коррозии металла паровых котлов высокого давления

Техника безопасности при проведении работ по защите от коррозии оборудования для поддержания пластового давления

Электрохимическая коррозия влияние давления



© 2025 Mash-xxl.info Реклама на сайте