Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обтекание тонкого симметричного профиля

Фпг. 152. Обтекание тонкого симметричного профиля сверхзвуковым потоком, направленным вдоль хорды БС.  [c.373]

Рассмотрим подсасывающую силу, возникающую при дозвуковом обтекании крыла, у которого передняя кромка может быть закруглена. Известно, что для тонкого симметричного профиля, обтекаемого под углом атаки, коэффициент подъемной силы = 2я(а -f )- Его значение можно рассматривать как сумму ДВУХ составляющих = 2яа — коэффициента для плоской пластины под  [c.203]


Рассмотрим подсасывающую силу, возникающую при дозвуковом обтекании крыла, у которого передняя кромка может быть закруглена. Мы уже знаем, что для тонкого симметричного профиля, обтекаемого под  [c.574]

G помощью формулы (8-24) на основе непосредственных измерений распределения давления по контуру профиля было подсчитано сопротивление давления для семейства симметричных профилей, показанных на рис. 15-3. Сопротивление трения может быть получено как разность между измеренным полным лобовым сопротивлением и измеренным сопротивлением давления. Отношение сопротивления трения к полному лобовому сопротивлению показано на рис., 15-4. Для вытянутых (тонких) сече-йий профилей сопротивле-1,0 ние трения составляет 70— 80% от полного для круглого цилиндра, однако, оно составляет только около 3% от полного. В последнем случае происходит отрыв пограничного слоя, причем точки отрыва лежат перед диаметральным сечением цилиндра. В результате вся кормовая часть оказывается в зоне пониженного давления в следе, что и приводит к высокому сопротивлению формы. Сопротивление поверхности почти целиком определяется пограничным слоем до точки отрыва. Теория движения идеальной (невязкой) жидкости предсказывает симметричное распределение давления и нулевое значение лобового сопротивления. Различия, имеющие место между случаями обтекания цилиндрического тела идеальной и вязкой жидкостями, иллюстрируются на рис. 15-1 и обсуждаются ниже.  [c.402]

Поскольку при рассмотрении произвольного тонкого профиля складываются скорости возмущений, соответствующие обтеканию профиля без толщины и обтеканию симметричного профиля, то складываются и возмущения давления р, а следовательно, и подъемные силы. Симметричный профиль при бесциркуляционном обтекании имеет нулевую подъемную силу. Поэтому произвольный тонкий профиль имеет такую же подъемную силу, как и профиль без толщины, проведенный по его средней линии.  [c.186]

Рассмотрим вначале обтекание тонкого профиля дозвуковым потоком ). Начнем с задачи симметричного обтекания профиля  [c.357]

VIП.5. Найдите распределение давления, силу сопротивления и коэффициент этой силы для тонкого треугольного крыла с симметричным профилем при обтекании сверхзвуковым потоком (Мсо=1,3 роо= = 1 кГ/см k = p/ v=l,4) под нулевым углом атаки. Основные размеры этого крыла (рис. 2.У1П.З) следующие / = 6 м кр=5 м Ь =2 лг, А = 0,2 м.  [c.396]


Л. и. Седовым был предложен метод, позволяющий получить рещение задачи обтекания произвольного тонкого профиля, если известно решение двух задач, рассмотренных в 3 и 4 обтекания профиля без толщины и бесциркуляционного обтекания симметричного тонкого профиля.  [c.182]

Очевидно, что эта функция удовлетворяет условиям на бесконечности и постулату Чаплыгина—Жуковского. Нетрудно, учитывая (5.6) и (5.7), убедиться в том, что эта функция удовлетворяет и условиям (5.5) на верхнем и нижнем берегах разреза (—а,+а). Поэтому искомая функция (г) = (г). Таким образом, комплексный потенциал возмущений обтекания произвольного тонкого профиля складывается из комплексных потенциалов возмущений обтекания профиля без толщины и бесциркуляционного обтекания симметричного тонкого профиля.  [c.183]

Как и при обтекании профиля, разделим общую задачу на две задачу об обтекании симметричного относительно плоскости у = 0 крыла ненулевой толщины и задачу об обтекании бесконечно тонкого изогнутого крыла. В первом случае потенциал возмущений симметричен относительно у, т. е.  [c.374]

Для определения аэродинамических. характеристик р, Хв, Ст-в) тонкого крыла произвольной формы в плане с симметричным профилем, обтекаемого маловозмущенным сверхзвуковым потоком при нулевом угле атаки (су = 0), применяют метод источников. В соответствии с этим методом при исследовании обтекания крыла его поверхность заменяется системой распределенных источников. Нахождение потенциала этих источников в произвольной точке поверхности крыла позволяет рассчитать распре.щление давления, если заданы форма крыла в плане вид профиля и число Маха набегающего потока.  [c.214]

Задача построения течения газа Чаплыгина через решетки, как и задача обтекания одиночных профилей, долгое время не поддавалась решению из-за нео.днолистности отображения (24.11) при наличии циркуляции скорости вокруг профиля. Эта задача впервые была решена в 1946 г. Л, И. Седовым и затем Липом [47]. А. И. Бунимович построил в 1950 г. ио методу Л. И. Седова семейство теоретических решеток, используя отображение единичного круга без двух симметрично расположенных точек на решетку теоретических профилей. В связи с выбором канонической области этот метод практически пригоден только для получения решеток малой густоты из тонких слабоизогнутых профилей. В 1950 г. автором были развиты описанные в данном разделе более эффективные методы построения теоретических решеток в потоке газа, исходя из данного обтекания любых решеток потоком несжимаемой жидкости. Можно было бы у казать еше ряд более поздних работ, посвященных различным хо-вершенствованиям в решении той же задачи. Однако аналитические методы построения теоретических решеток, как уже указывалось для той же задачи в потоке несжимаемой жидкости, в настоящее время не имеют практического значения, поскольку они непосредственно не решают ни прямой задачи теории решеток (расчет обтекания заданной решетки), ни основной обратной задачи (построение решеток с заданным распределением скорости).  [c.214]

Введение. Большинство результатов, достигнутых до настоягцего времени нри решении задач об обтекании тел сверхзвуковым потоком газа при наличии новерхности разрыва, относится к течениям, мало отличаюгцимся либо от поступательного течения, либо от обтекания угла (клина), либо от симметричного обтекания круглого конуса. Наиболее полно изучены плоские течения, близкие к поступательному (обтекание тонких профилей под малый углом атаки). Получены [1 приближения вплоть до малых величин четвертого порядка, считая за малую величину угол, который касательная к контуру профиля образует с направлением набегаюгцего потока. Пространственные течения, близкие к поступательному (обтекание тонких крыльев конечного размаха и тонких тел врагцения под малым углом атаки), изучены только в линейном ириближении. Почти во всех работах по исследованию течений газа, близких к обтеканию угла и конуса, уравнения газовой динамики, взятые в той или иной форме, линеаризуются но условиям за плоской или, соответственно, конической поверхностью разрыва.  [c.443]

Большое значение для изучения плоских течений несжимаемой жидкости с помощью теории функций комплексного переменного сыграли монографии В, В. Голубева Теория крыла аэроплана в плоскопараллельном потоке (1927) и Л. И. Седова Теория плоских течений идеальной жидкости (1939), Л. И. Седов в этой монографии ввел в теорию обтекания тонкого профиля метод выделения особенностей на кромках профиля, позволивший ему найти в замкнутом виде решение задачи об отыскании интегральных характеристик тонкого профиля, подъемной силы, момента сил. Решение задачи обтекания профиля может быть получено также в виде рядов, составленных из фундаментальных функций, удовлетворяющих уравнению Лапласа. Такое решение для симметричного профиля было получено Я. М. Серебрийским (1945), причем решение уравнения Лапласа находилось в Эллиптической системе координат в виде ряда для потенциала скорости.  [c.86]


Эквивалентность гиперзвукового обтекания тонких заостренных тел и нестационарных движений газа на плоскости дала возможность использовать для аэродинамических приложений методы и результаты теории одномерных нестационарных движений газа, в частности, многие результаты теории одномерных автомодельных течений газа естест-вeннo чтo для аэродинамических приложений могут быть использованы лишь результаты для течений с плоскими и с цилиндрическими волнами, соответствующие обтеканию профилей и симметричному обтеканию тел вращения). Простейшие примеры такого использования решений — для плоского и цилиндрического поршней, расширяющихся с постоянной скоростью,— имеются уже в работах  [c.186]

Как видно, получено одно уравнение с двумя неизвестными функциями Рз и С 2. Аналогично Ог. функция С э представляет собой интенсивность источников на плошади 5в, принадлежанюй области, которая расположена между левой передней кромкой и линией Маха, проведенной из вершины крыла. Таким образом, если крыло имеет дозвуковую переднюю кромку, то при помощи метода источников нельзя исследовать обтекание тонкого крыла с симметричным профилем под углом атаки, равно как и крыла с такой кромкой и несимметричным профилем при нулевом угле атаки или афО.  [c.334]

В межзвуковом диапазоне скоростей С2 < с < физическая картина движения тонкого заостренного симметричного клина в однородной упругой плоскости имеет сходство со случаями обтекания тела дозвуковым потоком идеальной сжимаемой жидкости или упругой средой при скоростях Сд < с < С2 (рис. 3). В зависимости от профиля клина /(х) (/(0) = О, / (х) <С 1, / Ч )1 схэ) и скорости, точка отрыва совпадает с задней кромкой тела (/ = 1) или является промежуточной I < 1). Снесенные на прямую у = О смешанные краевые условия этой задачи для определения полей напряжений, смещений (и, у) и скоростей (II, V) в верхней полуплоскости у > О и дополнительные условия в форме неравенств следующие  [c.662]

В связи с ростом скоростей полета самолета широкое применение сейчас находят стреловидные крылья и крылья малого удлинения различной формы в плане. Условия обтекания профиля в сечении таких крыльев как при малых, так и при больших скоростях могут суш,ественно отличаться от условия плоскопараллельного потока из-за пространственного характера течения. В ряде работ ЦАГИ были установлены основные закономерности перестройки обтекания профиля в системе стреловидных крыльев и крыльев малого удлинения. В. В. Струминским, Н. К. Лебедь и К. К. Костюком (1948) путем экспериментального исследования распределения давлений в различных сечениях стреловидных крыльев при малых скоростях было показано, что наиболее суш,ественным изменениям, обусловленным трехмерным характером течения, подвергается обтекание профилей, установленных в корневых и концевых сечениях стреловидного крыла, В корневом сечении крыла с прямой стреловидностью область повышенных местных скоростей смеш ается вперед к носку профиля по сравнению с эпюрой скоростей такого же профиля в условиях плоскопараллельного обтекания в концевом сечении происходит обратная перестройка, т. е. область повышенных местных скоростей смеш,ается к задней кромке профиля. В срединных сечениях стреловидного полукрыла большого удлинения условия обтекания близки к условиям на скользящем крыле бесконечного удлинения. В работе Я. М. Серебрийского и М. В. Рыжковой (1951) с помощью метода источников и стоков проводится приводящее к тем же выводам, что и эксперимент, теоретическое исследование симметричного обтекания профиля в системе тонкого крыла произвольной формы в плане при обтекании его потоком идеальной несжимаемой жидкости. Учет пространственного обтекания стреловидного крыла приводит к необходимости применения профилей различной формы на отдельных участках крыла. Такие специальные профили создавались для корневых и концевых отсеков стреловидного крыла (Г. П. Свищев, Я. М. Серебрийский, К. С. Николаева, М. В. Рыжкова). Существенное изменение местных скоростей происходит и на крыльях малого удлинения. При уменьшении удлинения за счет пространственности обтекания уменьшаются возмущения на поверхности профиля, причем для малых удлинений это уменьшение возмущений может быть весьма существенным не только в концевых, но и в средних сечениях крыла.  [c.89]


Смотреть страницы где упоминается термин Обтекание тонкого симметричного профиля : [c.196]    [c.226]    [c.308]    [c.215]   
Аэродинамика Часть 1 (1949) -- [ c.0 ]



ПОИСК



274, 323—327 симметричный

Обтекание

Профиль симметричный

Решение задачи о бесциркуляционном обтекании тонкого симметричного профиля



© 2025 Mash-xxl.info Реклама на сайте