Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Чугун Свойства 207, 209 — Влияние механической обработки

Относительное влияние механической обработки на свойства ковкого чугуна  [c.121]

Механическая обработка. Механические качества чугунных отливок зависят от степени гладкости их поверхности и условий механической обработки [33]. Влияние гладкости поверхности на механические свойства сказывается у чугуна значительно меньше, чем у стали, из-за наличия в первом графитовых включений.  [c.34]

Как общее правило, чем ниже качество чугуна, тем меньшее влияние оказывает механическая обработка и степень гладкости поверхности на механические свойства отливки.  [c.34]


Для того чтобы получить свойства сварного шва, такие же, как у свариваемого чугуна, условия сварки следует выбирать так, чтобы металл шва и зона термического влияния содержали бы те же структурные составляющие, в том же количестве, того же размера и такой же формы, что и в основном металле. Ни в коем случае нельзя допускать образования ледебурита и мартенсита, способствующих образованию трещин в сварных соединениях. Кроме того, сварные соединения, содержащие ледебурит и мартенсит, не поддаются механической обработке. Поэтому скорость охлаждения должна быть достаточно мала. Лучше всего производить сварку с полным подогревом всей детали до 580—620° С (горячая сварка) присадочным металлом такого же состава, как и состав основного металла. Затем деталь без промежуточного охлаждения необходимо отжигать  [c.66]

Изучение влияния содержания углерода на эрозионную стойкость проводили на образцах из серого чугуна с различным содержанием углерода. Все образцы имели примерно одинаковое качество механической обработки и находились в состоянии отливки. Результаты испытания приведены в табл. 45. Полученные данные показывают, что увеличение содержания углерода отрицательно влияет не только на механические свойства чугуна, но и на его сопротивление микроударному разрушению. Потери массы образца особенно возрастают, когда содержание углерода достигает 3% и более.  [c.149]

На механические свойства чугуна значительное влияние оказывает термическая обработка.  [c.123]

Следует отметить, что влияние кристаллизации под давлением на форму, размеры и характер распределения графита сохраняется и после термической обработки чугуна [88, 90]. Кроме того, термическая обработка чугуна при всех режимах прессования кристаллизующейся отливки способствует повышению механических свойств. Так, применение давления во время кристаллизации увеличивает предел прочности при изгибе серого чугуна в 1,5 раза, стрелу прогиба — в два раза (в литом состоянии) после последующей термической обработки они возрастают в 2 и 7,6 раза соответственно [88].  [c.133]

Выбор СОТС в каждом конкретном случае зависит от технологического метода и режима обработки, а также физико-механических свойств обрабатываемого и инструментального материала. При черновой и получистовой обработках, когда требуется эффективное охлаждающее действие среды, применяют водные растворы электролитов и поверхностно-активных веществ, масляные эмульсии. При чистовой обработке применяют чистые и активированные минеральные масла. Под влиянием высоких температур и давлений эти вещества образуют на поверхности заготовок соединения (фосфиды, хлориды, сульфиды), снижающие трение. При обработке хрупких материалов (чугун, бронза) твердосплавным инструментом в качестве СОТС используют газы (сжатый воздух, углекислый газ).  [c.459]


Измерение передних углов у (см. рис. 15.5) на режущих зубьях протяжек производится между плоскостью, перпендикулярной геометрической оси протяжки, и передней поверхностью зуба. При этом измерение производится в плоскости, проходящей через вектор скорости резания в рассматриваемой точке режущей кромки и геометрическую ось протяжки. Значение переднего угла на протяжках берется в пределах у = 0... 20° в зависимости от физико-механических свойств обрабатываемых металлов при обработке стали у = 15° при обработке чугуна у = 5°. Значения передних углов оказывают влияние на силу резания.  [c.250]

Учение об изменении внутреннего строения и физико-механических свойств сплавов в результате теплового воздействия, не исчезающих после прекращения этого воздействия, составляет теоретические основы термической обработки. Общее представление о превращениях, протекающих в железоуглеродистых сплавах в результате теплового воздействия, можно получить из диаграммы состояния железо — цементит и железо — углерод. Как в сталях, так и в чугунах всегда присутствуют кремний, марганец, фосфор, сера, а в легированных сплавах — никель, хром, молибден, медь, ванадий, титан и др. Легирующие элементы и примеси изменяют положение линий диаграммы, на которых отложены критические точки структурных превращений. Одни элементы снижают температуру превращений, а другие — повышают. Без учета влияния этих элементов невозможно правильно, пользуясь только лишь диаграммой, разработать режимы термической обработки.  [c.92]

Влияние обрабатываемого материала. Физико-механические свойства обрабатываемого материала оказывают значительное влияние на силы, возникающие в процессе резания. Чем больше прочность и твердость металла, тем сильнее он сопротивляется резанию и тем больше величина сил резания. При обработке хрупких металлов, стружка которых незначительно деформируется при срезании, силы резания будут меньше, чем при обработке более вязких (пластичных) металлов. Так, например, при обработке серого чугуна сила резания приблизительно в 1,5—2 раза меньше, чем при обработке стали той же твердости.  [c.52]

Нанесение покрытий в вакууме — универсальный перспективный метод поверхностной обработки полуфабрикатов и деталей. В книге изложены основы технологии нанесения алюминиевых, хромовых и других покрытий на сталь, чугун, алюминиевые и магниевые сплавы, а также на различного рода неметаллические материалы. Приведены результаты последних исследований в этой области. Рассмотрены особенности непрерывных линий нанесения покрытий на полосовую сталь, методы улучшения равномерности толщины покрытий, экономика вакуумной металлизации. Особое внимание уделено влиянию условий нанесения покрытий на их адгезию, антикоррозионные и механические свойства.  [c.368]

Для уменьшения деформаций применяют также предварительный подогрев свариваемой детали. В этом случае разность между температурой сварочной ванны и температурой всей детали уменьшается, и, следовательно, будут уменьшаться деформации от нагрева в процессе сварки. Данный способ нашел широкое применение при ремонте изделий из чугуна, алюминия, бронзы, высокоуглеродистых и легированных сталей. Изделий подогревают в специальных горнах, печах, индукторах. В некоторых случаях рекомендуется проковывать шов. Проковку проводят как в горячем, так и в холодном состоянии. Проковка металла шва улучшает механические свойства наплавленного металла и в значительной степени уменьшает усадку. Кроме того, для снятия возникших при сварке напряжений и улучшения структуры металла шва и зоны термического влияния применяют термическую обработку.  [c.120]

Физико-механические свойства чугунов зависят от формы включений графита и особенностей структуры металлической матрицы, формирующейся в процессе распада аустенита при охлаждении отливок. Для получения компактных включений графита в чугунных отливках в качестве модификаторов широко используются редкоземельные элементы. Однако характер влияния редкоземельных элементов на структурные изменения при эвтектоидном превращении в железоуглеродистых сплавах еще во многом неясен. В работах [1—3] отмечается ферритообразующее действие редкоземельных элементов в сталях, тогда как в работах [4, 5] указывается на снижение критических точек и повышение устойчивости аустенита. При модифицировании редкоземельными элементами чугунов наблюдалось увеличение количества перлита в матрице Влияние модификаторов нередко определяли по величине присадок, что приводило к значительным погрешностям, поскольку степень усвоения их может изменяться в широких пределах [6]. Отсутствие количественных данных о влиянии редкоземельных элементов на устойчивость аустенита затрудняет выбор обоснованных режимов охлаждения после затвердевания или при специальной термической обработке модифицированных чугунов.  [c.129]


Влияние условий плавки и обработки в жидком состоянии. Тип плавильного агрегата, шихтовые материалы, режимы плавки, условия модифицирования и рафинирования расплава оказывают существенное влияние на механические свойства серого чугуна, что связано с переохлаждением и образованием зародышей при кристаллизации.  [c.431]

Структура и уровень механических свойста чугуна в литом состоянии зависят не только от исходного химического состава расплава (в основном от содержания углерода и кремния или углеродного эквивалента), но и во многом от эффективности модифицирующей обработки, оказывающей основное влияние на процесс кристаллизации, формирование литой структуры и, следовательно, на свойства металла отливок.  [c.494]

В работе [37] исследовалось влияние термовременнои обработки и модифицирования на механические и литеи-ные свойства синтетического и ваграночного чугунов Синтетический ч>гун выплавляли из отходов стали Ст 3 в кислой индукционной печи, емкостью 50 кг В качестве карбюризатора в твердую завалку добавляли электрод ный порошок, для доводки использовали ферросилиций Си 75  [c.141]

Механические свойства — Влияние продолжительности выдержки при отжиге 191 — Влияние температуры отжига 191 — Влияние температуры отпуска после закалки 988 -- Механические свойства после закалки и отпуска 192 Обработка магнием — см. Чугун серый со ссрероидальным графитом в литой структуре  [c.1078]

В процессе эксплуатации литые детали в большинстве случаев сохраняют литейную корку, которая оказьшает влияние на механические свойства чзтуна (табл. 3.3.27). При снятии литейной корки с литых образцов временное сопротивление при растяжении ЧШГ снижается. При ферритной структуре металлической основы чугуна, характеризующейся высокой пластичностью, образцы, подвергнуты механической обработке, имеют в 2-3 раза более высокое относительное удлинение, чем образцы с литейной коркой.  [c.533]

Цирконий вводят в белый чугун при получении ковкого чугуна (ЛЯ того, чтобы при обработке его в жидком состоянии получить )Олее высокие механические свойства за счет образования первич 1ЫХ чешуек графита в процессе затвердевания. При содержании в )елом чугуне до 0,09% цирконий аналогично титану связан прей лущественно в нитридах. Обработка жидкого чугуна циркониевым 10Дификатором усиливает влияние таких легирующих элементов, <ак хром, молибден и ванадий.  [c.63]

Большое влияние на структуру и свойства чугуна оказывает модифицирование. Модифицированным чугуном называют сплавы, соответствующие по химическому составу отбеленному чугуну, но затвердевающие серыми после обработки на желобе вагранки или в ковше графитизирующими добавками (графитом, ферросилицием, силикокальцием, а также комплексными модификаторами, содержащими кремний, алюминий, цирконий, лантан и другие элементы). Модифицированный чугун отличается от обычного серого повышенными механическими свойствами и, главное, более равномерной структурой в тонких и толстых сечениях отливок [3—5],  [c.10]

Для изучения влияния температуры перегрева на структуру и механические свойства обычного и синтетического чугунов в индукционной печи промышленной частоты емкостью 6 т сплавы последовательно перегревались до температур 1350, 1400, 1450, 1500 и 1550° С. После достижения требуемой температуры чугун выдерживался в печи в течение 10 мин, а затем отбиралась необходимая для заливки образцов порция металла. Температура заливки образцов была равна 1350—1380° С. В качестве шихтовых материалов использовались чугунная стружка и обрезь динамной стали. Химический состав сплавов и вид обработки приведены в табл. 36. Под перегревом при  [c.134]

Предлагаемая книга посвящена проблеме термической усталосте, т.е процессу появления поверхностных трещин и их постеленного развития вплоть до полного разрушения изделий, работающих в условиях циклических нагревов и охлаждений, сопровождающихся созданием больших градиентов температур по сечению детали. На основе обобщения литературных сведений, данных эксплуатации разнообразногб технологического и энергетического оборудования в ПНР, а также используя собственные производственные и лабораторные исследования, автор сделал попытку установить общие закономерности влияния многочисленных факторов (условий службы, химического состава, структуры и физико-механических свойств материалов) на српротивлен термической усталости конкретных изделий (стальных форм для литья чугунных труб, инструмента горячей и холодной штамповки, прокатных валков, деталей термического оборудования, роторов турбин и др.). При этом приведены практические рекомендации по выбору материалов, термической, химико-терми-ческой и других видов обработки с целью повышения сопротивления усталости изделий, работающих в условиях циклических термических нагрузок. Дано также описание основных методов исследования структуры и свойств материалов при термической усталости.  [c.6]

Чугун и сталь получили исключительно широкое распростра-яение в технике и в обыденной жизни благодаря сзоим весьма Иенным свойствам. Они обладают большой механической прочностью и твердостью, отлично проводят тепло и электричество й при соответствующей обработке могут принять любую сложную форму. Однако чугун и сталь имеют и серьезные недостатки, так как они быстро покрываются ржавчиной и сильно разрушаются от действия кислот. Для предохранения изделий от разрушения, их поверхности покрывают тонким слоем такого материала, который является устойчивым против этих вредных влияний. Такие покрытия, защищаюнще поверхности изделий от разрушения, называются защитными покрытиями.  [c.3]

На механические свойства чугуна также оказывает влияние строение графита. Минимальную прочность имеет чугун с пластинчатым строением графита, максимальную — с шаровидным. Для повышепия качества отливку иногда подвергают термической обработке отжигу для удаления отбеленного слоя (структуры белого чугуна), отпуску для снятия внутренних напря кений. Повышение прочности серого чугуна возможно легированием и модифицированием.  [c.190]


Для определения влияния режима последующей термической обработки на механические свойства образцов были произведены следующие опыты партия образцов после цементации подвергалась закалке и отпуску при 200°С, вторая партия образцов предварительно подвергалась нормализации при температуре 860°С, а затем закалке и отпуску при температуре 200°С. В обоих случаях продолжительность выдержки при отпуске была по 1 часу. Образцы нагревались и охлаждались в чугунных стружках, для того чтобы предотвратить их обезуглероживание или окисление. Глубина цементованного слоя равнялась 1,2—1,4 мм.  [c.25]

Так как кристаллизация в вертикальном положении создает неодинаковые условия затвердевания металла по длине вала, структура и механические свойства образцов, вырезанных с противоположных концов вала, также неодинаковы. Нижний конец вала затвердевает быстрее, верхний, имеющий прибыль, остывает медленнее, и поэтому его структура отличается большим содерлсанием феррита и более крупным строением графита по сравнению с графитом нижнего конца вала. Учитывая неоднородность структуры, получаемой непосредственно при отливке, валы подвергаются термической обработке (иормацизации) по следующему режиму нагрев до 860—880° с выдержкой в течение 6—8 час., охлаждение с печью до 760—780°, дальнейшее охлаждение на воздухе. Для снятия термических напряжений валы подвергаются отпуску при температуре 500—550°. Однако термическая обработка не устраняет полностью неоднородности структуры и значений механических свойств коленчатого вала. В различных концах вала получаются хотя и неодинаковые механические свойства, но по своему значению они выше требований ТУ на чугун для коленчатых валов. Раньше коленчатые валы тепловозов отливались из чугуна марки ХНМ (содержащего дефицитные и дорогие присадки хрома, никеля и молибдена), механические свойства которого значительно ниже, чем высокопрочного чугуна с шаровидным графитом. Можно отмстить, что влияние прибыли от верхнего конца распространяется около 10%.  [c.233]

На величину температуры в зоне резания оказывают влияние следующие факторы физико-механические свойства обрабатывае-люго материала, режим резания (скорость резания, подача и глубина резания), геометрические параметры инструмента и применение смазочно-охлаждающей жидкости. При обработке стали выделяется больше тепла, чем при обработке чугуна. Чем выше предел прочности Ов и твердость обрабатываемого материала, тем больше выделяется тепла. Большое влияние оказывают также теплопроводность и теплоемкость обрабатываемого материала. Чем выше теплопроводность обрабатываемого материала, тем интенсивнее отвод тепла в стружку и обрабатываемую деталь, а следовательно, тем меньше нагревается резец. От теплоемкости обрабатываемого материала зависит количество тепла, воспринимаемое стружкой и заготовкой.  [c.43]

Легирование никелем в сочетании с термической обработкой обеспечивает высокие физико-механические свойства чугунного литья. Основную роль при этом играют процессы структурных изменений, связанных с превращением аустенита, повышение устойчивости которого при охлаждении обеспечивает получение оптимальной структуры [1, 2]. Для уточнения закономерностей влияния никеля на эти процессы нами исследованы структурнокинетические особенности образования аустенита и эвтектоидного превращения в сером чугуне, содержащем 3,50—3,15% С, 2,28% 51, 0,038% 5, 0,056% Р и 0,0 0,6 2,11 3,15 и 6,25% N1. Выплавленный в 40-кг индукционной печи чугун заливали в земляные формы. Он затвердевал в виде цилиндрических отливок диаметром 30 и длиной 300 мм со структурой доэвтектического серого чугуна, т. е. имел эвтектический графит розеточного строения и либо перлито-ферритную, либо (при 6,25% N1) троостито-мартенситную матрицу.  [c.112]

Кремний оказывает значительное влияние как на структуру, так и на механические свойства ВЧШГ, и практически регулирование количества феррита в ВЧШГ в сыром состоянии осуществляют подбором содержания кремния в металле. При содержании 3,0—3,3% кремний способствует получению устойчивой ферритной структуры в сыром состоянии однако пластичность чугуна прн этом все-таки понижается, и при количестве кремния свыше 3,5% он способствует появлению хрупкости, даже при обычном содержании марганца и фосфора. Поэтому о точки зрения пластичности лучше следует принимать 81 = 2,0-ь2,4%, а для получения чистого феррита применять термическую обработку. Содержание 51 не должно превышать 2,3% во избежание отрицательного влияния его на Ов и  [c.69]

Характер структуры отливок в каждом данном случае зависит от очень большого количества факторов химического состава чугуна, способа плавки, температурного и шлакового режимов ее, условий затвердевания отливок, их предварительной термической обработки, условий и режима отжига и последующего охлаждения отливок. Влияние каждого из них изучено еще недостаточно, и поэтому в настоящее время к структуре отливок разных марок чугуна могут быть предъявлены только общие требования (табл 10). Эти требования основаны на данных практики производства основных видов чугуна, но лишь в известной мере характеризуют фактические свойства отливок. В соответствии с этим их структура, так же как и химический состав чугуна, не являются браковочным признаком при условии, что показатели механических свойств удовлетворяют установленным требованиям и структура образцов, подвергави1Ихся испытаниям, идентична структуре отливок.  [c.305]

Криштал М. А., Теоретические основы нейтрализации хрома в ковком чугуне. Сб. трудов Тульского механического института Влияние обработки на структуру и свойства металлов и сплавов . Тульское книжное издательство, 1960.  [c.766]

Свойства КЧ определяются главным образом его структурой, которая формируется при кристаллизации БЧ и превращениях в твердом состоянии. На структуру чугуна влияют химический состав, условия кристаллизации (скорость охлаждения, температура и др.) и термическая обработка. Значительное влияние на свойства оказьшают число, размер и форма графитовых включений. Способность матрицы КЧ воспринимать нагрузку при равномерном распределении напряжений (за счет компактной формы графита) обусловливает его более высокие механические свойства о , б чем у серого чугуна (СЧ), имеющего аналогичную с КЧ металлическую основу.  [c.677]


Смотреть страницы где упоминается термин Чугун Свойства 207, 209 — Влияние механической обработки : [c.539]    [c.58]    [c.134]    [c.245]    [c.134]    [c.150]    [c.2]   
Справочник машиностроителя Том 2 (1952) -- [ c.214 ]



ПОИСК



141 — Влияние на свойства

Влияние Влияние на свойства чугун

Влияние Механическая обработка

Влияние обработки

Механические Влияние механической обработки

Нормализация чугуна Отжиг чугуна Отпуск чугуна Химико-термическая обработка чугуна — Влияние на механические свойства

Обработка механическая

Чугун Механические свойства

Чугуны Свойства

Чугуны — Обработка



© 2025 Mash-xxl.info Реклама на сайте