Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сталь Химико-термическая Отпуск

Термическая обработка стали 111, 117 — см. также Закалка стали] Нормализация стали] Отжиг стали] Отпуск стали] Химико-термическая обработка] — Дефекты 136— 140 - Нагрев 77, 85, 117, 118, 121 — 124, 139 —Охлаждение 78—80, 85, 111, 112— 116, 121, 127 — Характеристики основных процессов 112-116  [c.1024]

Цементация стали — химико-термическая обработка поверхностным насыщением малоуглеродистой (С < 0,2%) или легированных сталей при температурах 900...950°С — твердым (цементация твердым карбюризатором), а при 870...900°С — газообразным (газовая цементация) углеродом с последующими закалкой и отпуском. Цель цементации и последующей термической обработки — повышение твердости, износостойкости и пределов контактной выносливости поверхности изделия при вязкой сердцевине, что обеспечивает выносливость изделия в целом при изгибе и кручении.  [c.159]


Примечание. Марки стали данной группы могут подвергаться химико-термической обработке по режиму цианирование при 820—вбб " С закалка с 820—860° С в масле отпуск при 180—200 С твердость поверхности Я/ С 5 54 жидкостная цементация при 820—840 С закалка с 820—840 С в масле отпуск при 180—200 С твердость с поверхности HR > 50.  [c.323]

Химико-термическая обработка. Среди существующих процессов химико-термической обработки для быстрорежущих сталей широкое применение нашли два процесса — цианирование и обработка паром, проводимые после закалки и отпуска.  [c.355]

Цианирование — процесс химико-термической обработки, при котором производится насыщение поверхностного слоя стали одновременно углеродом и азотом, обеспечивающее получение после закалки и низкого отпуска повышенных твердости и прочности поверхностного слоя, износостойкости и усталостной прочное и (табл. 99 и 100).  [c.136]

После химико-термической обработки детали подвергают закалке и отпуску, режим которых зависит от химического состава стали и конструкции детали.  [c.121]

Основные преимущества эндотермической атмосферы перед другими защитными атмосферами следующие 1) экономичность 2) простота установки для ее приготовления и возможность автоматизации ее работы 3) регулируемость и универсальность, позволяющая применять ее к различным сталям и чугунам с содержанием от 0,2 до 2% С и к различным видам термической обработки (закалка, отжиг, нормализация), за исключением высокого отпуска. При соответствующей регулировке — увеличении содержания в ней метана (СН ) или аммиака (NH.J —эндотермическая атмосфера может обогащать поверхность стали углеродом или азотом или и тем, и другим, т. е. применяться для химико-термической обработки (см. гл. X).  [c.220]

Прежде всего износостойкость может достигаться высокой твердостью поверхности. Стали, имеющие высокую поверхностную твердость, подвергаются закалке и низкому отпуску или химико-термической обработке. Они имеют структуру мартенсита или мартенсита с карбидными включениями. К этой группе можно отнести рассмотренные выше цементуемые и шарикоподшипниковые стали, а также рассматриваемые ниже инструментальные стали.  [c.167]

Механические свойства цементуемых сталей после закалки и низкого отпуска — высокая прочность в сочетании с высоким сопротивлением удару, поэтому они могут использоваться как конструкционные материалы без химико-термической обработки (табл. 7.2).  [c.101]

Типовой режим химико-термической обработки изделий, например зубчатых колес, из среднелегированной цементуемой стали включает цементацию при 930° С, подстуживание до 850° С, затем ступенчатую закалку — выдержку в горячем масле (180° С) с последующей закалкой в холодном масле и низкий отпуск при 180° С.  [c.309]


Основы и назначение заключительной обработки (химико-термической обработки, отпуска после шлифования) инструментальных сталей.  [c.781]

Цементация — процесс химико-термической обработки, при которой происходит насыщение поверхностного слоя стали углеродом с целью получения после закалки низкотемпературного отпуска, прочного и износостойкого поверхностного слоя деталей.  [c.91]

В третьем разделе даны основные сведения о тех превращениях, которые испытывает сталь при нагреве и охлаждении с различной скоростью рассмотрены приемы отжига, закалки и отпуска, а также основного вида химико-термической обработки — цементации.  [c.3]

Операциями термической обработки, общими для стали, чугуна и цветных сплавов, являются отжиг, нормализация, закалка и отпуск. Кроме того, широко применяют химико-термическую обработку стали.  [c.115]

Для повышения механических и других свойств стали и некоторых металлических сплавов широко применяют термическую и химико-термическую обработку, а также механическое упрочнение. К основным видам термической обработки относятся отжиг, нормализация, закалка, отпуск и улучшение.  [c.34]

Термическая и химико-термическая обработка сталей. Сущность термической обработки сталей. Основные виды термообработки отжиг, нормализация, закалка и отпуск их применение.  [c.506]

Для улучшения механических свойств изготовленные из углеродистых сталей изделия ответственного назначения подвергают упрочняющей термической обработке — закалке и отпуску, а также различным операциям химико-термической обработки.  [c.143]

Конструкционные стали могут быть легированы одним или несколькими элементами. Однако важнейшей присадкой, определяющей структуру, свойства и область их применения, является углерод. В зависимости от содержания углерода конструкционные стали делят на цементуемые (до 0,2 и даже до 0,3% С) и улучшаемые (при содержании углерода 0,3% и выше). Детали, изготовленные из сталей первой группы, подвергают поверхностной химико-термической обработке (цементации, цианированию и т.д.), а детали, изготовленные из сталей второй группы, проходят термическое улучшение (закалку с последующим высоким отпуском).  [c.217]

Указать последовательность операций термической и механической обработки, а также микроструктуру и твердость стали после закалки и после отпуска объяснить, в чем заключается влияние цианирования на свойства стали. Почему рекомендуемый режим химико-термической обработки нельзя применить для углеродистой инструментальной стали  [c.392]

Под химико-термической обработкой понимается насыщение поверхностных слоев стали различными элементами с последующей термической обработкой — закалкой и отпуском. После химико-термической обработки повышаются прочность, вязкость, износоустойчивость, сопротивление коррозии и жаростойкость поверхностного слоя стали.  [c.346]

В твердом состоянии химический состав сплава не изменяется. В частности, не изменяется химический состав стали при ее термической обработке — при отжиге, нормализации, закалке и отпуске. Но есть возможность изменить химический состав стали, вернее химический состав поверхностных слоев стальной детали, и в твердом состоянии. Это осуществляется химико-термической обработкой цементацией, азотированием, цианированием и другими процессами.  [c.189]

Химико-термическая обработка характеризуется изменением химического состава поверхностного слоя зубьев зубчатых колес в результате насыщения стали углеродом или другими элементами из внешней среды с последующей закалкой и отпуском.  [c.88]

Термическая и химико-термическая обработка стали. Термической обработкой называется процесс тепловой обработки металлов и сплавов с целью изменения их структуры, а следовательно, и свойств, заключающийся в нагреве до определенной температуры, выдержке при этой температуре и последующем охлаждении с заданной скоростью. В зависимости от температуры нагрева и способа охлаждения различают следующие виды термической обработки закалку, отпуск, отжиг и нормализацию.  [c.84]


Из методов химико-термической обработки зубьев для зубчатых колес ПТМ чаще всего применяют азотирование и цементацию. Азотированием пользуются для деталей, изготовленных из среднеуглеродистых и легированных сталей. После процесса азотирования и последующей закалки с отпуском рабочие поверхности зубьев получают твердость 40—50 ННС при твердости внутренних слоев 190—230 НВ. Толщина азотированного (закаленного) слоя обычно находится в пределах 2,5—4 мм.  [c.62]

Многократные пластические деформации микрообъемов металла — составная часть общего процесса изнашивания металлических поверхностей. Скорость изнашивания металла рабочих поверхностей деталей вследствие пластического деформирования может быть снижена за счет применения объемной и поверхностной термической закалки с низкотемпературным отпуском химико-термической обработки (цементация, азотирование) конструкционных сталей с повышенными и высокими значениями предела текучести (хромистые, кремнистые) конструктивных методов снижения контактных напряжений (увеличение диаметра ходовых колес и др.).  [c.216]

Нитроцементация (цианирование) стали — химико-термическая обработка с одновременным поверхностным насьш1ением изделий азотом и углеродом при повышенных температурах с последующими закалкой и отпуском для повышения износо- и коррозионной устойчивости, а также усталостной прочности. Нитроцементация может проводиться в газовой среде при температурах 840...860°С (нитроцианирование) и в жидкой при температурах 820...950°С (жидкостное цианирование в расплавленных солях, содержащих группу Na N).  [c.160]

Углеродистые и легированные стали раньше других сплавов и композиционных материалов начали широко применять в различных узлах трения машин. Однако для обеспечения высокой износостойкости их подвергают методам термической и химико-термической обработки. Фазовые превра1цения в сталях в твердом состоянии обусловливают возможность осуществления всех видов термической обработки (закалка, отжиг, отпуск).  [c.160]

Среднеуглеродистые нелегированные и легированные стали, применяемые дли изготовления деталей трибосистем, подвергают химикотермической обработке. Химик о- термическая обработ-к а обеспечивает yлyчпJeниe триботехнических свойств поверхностного слоя деталей за счет диффузионного нась[и1сния химическими элементами или соединениями химически активных элементов с последующей закалкой и отпуском. Химико-термическая обработка производится в твердых, жидких и газообразных средах. По целевому назначению она делится на две основные фуппы.  [c.237]

Для повышения механических и других свойств стали ujiipoKO применяют термическую (отжиг, нормализация, улучшение, закалка и отпуск), химико-термическую обработку (цементацию, азотирование, цианирование и др.), механическое упрочнение и др.  [c.38]

Инструмент из быстрорежущей стали после закалкн и отпуска, шлифования, заточки и полировки рекомендуется подвергать дополнительно химико-термической обработке (цианированию жидкому, газовому или в твёрдой среде) (см. стр. 522—525), а также обработке холодом (см. стр. 530—535).  [c.491]

Цементация. Цементация (науглероживание) — процесс химико-термической обработки, приводящий к насыщению поверхностного слоя стали углеродом с целью получения после термообработки (закалки и низкотемпературного отпуска) науглероженных деталей, повышения гвердости и прочности поверхностного слоя, износоустойчивости и усталостной прочности деталей.  [c.132]

Химико-термическая обработка, при которой изменяются химический состав, структура и свойства поверхностного слоя. Как и поверхностная закалка, производится для придания поверхностному слою высокой твердости и износостойкости при сохранении цязкой сердцевины. Основные виды химико-термической обработки следующие а) цементация, заключающаяся в насыщении углеродом поверхности детали, изготовленной из малоуглеродистой стали, последующих закалке и отпуске б) азотирование, при котором поверхность детали насыщается азотом, образующим химические соединения (нитриды) с железом, хромом, молибденом, алюминием и другими элементами. Процесс эффективен при азотировании легированной стали, имеющей указанные прнмесн, например стали 38ХМЮА в) цианирование — одновременное насыш,ение поверхности углеродом и азотом.  [c.33]

Повышение ирочности стали достигается твердорастворным Аотр), дислокационным (Лод), дисперсионным (АНду), зернограничным (Аоз) и субструктурным (Аос) упрочнением, получаемым путем термической, термомеханической, химико-термической и деформационной обработок, а также подбором состава стали. В табл. 4 показано, за счет каких механизмов происходит повышение прочности От низкоуглеродистых строительных сталей (<0,25 % С) с ферритно-перлитной структурой и машиностроительных сталей после закалки на мартенсит и отпуска. В таблице даны расчетные формулы для оценки вклада в упрочнение различных механизмов. Величина определяется су. шарным вкладом каждого механизма упрочнения  [c.253]

Для получения высокого сопротивления износу в машиностроении применяют химико-термическую обработку поверхностей низкоуглеродистых сталей цементацию, заключающуюся в диффузионном насыщении металлов углеродом в твердой, газовой и жидкой средах азотирование — диффузионное насыщение металла азотом цементацию — диффузионное насышение углеродом и азотом одновременно, после которой проводят закалку и низкий отпуск. Диффузионное насыщение при химико-термической обработке осуществляется на глубину менее 1 мм.  [c.358]


Под цементацией принято понимать процесс высокотемпературного насыщения поверхностного слоя стали углеродом. Так как углерод в а-фазе практически нерастворим, то процесс цементации осуществляется в интервале температур 930-950 °С — т. е. выще а у-превращения. Структура поверхностного слоя цементованного изделия представляет собой структуру заэвтектоидной стали (перлит и цементит вторичный), поэтому для придания стали окончательных — эксплуатационных — свойств после процесса цементации необходимо выполнить режим термической обработки, состоящий в закалке и низком отпуске температурно-временные параметры режима термической обработки назначаются в зависимости от химического состава стали, ответственности, назначения и геометрических размеров цементованного изделия. Обычно применяется закалка с температуры цементации непосредственно после завершения процесса химико-термической обработки или после подстуживания до 800-850 °С и повторного нагрева выше точки Ас центральной (нецементованной) части изделия. После закалки следует отпуск при температурах 160-180 °С.  [c.470]

Химико-термическиая обработка деталей крупногабаритных подшипников из стали марки 20Х2Н4А включает цементацию, высокотермический отпуск, закалку и низкотемпературный отпуск. Цементация производится в шахтных печах природным или городским газом (70-90 % СН4, 1,0-5,0 % СО, 5-20 % Н2, < 1,0 % СО2, < 1,0 % О2) при температуре 930-940 °С. В зависимости от требуемой толщины упрочненного слоя продолжительность цементации составляет 5-200 ч. Во избежание образования карбидной сетки детали охлаждают в масле до температуры 100-200 °С и затем помещают в печь для высокого отпуска. Высокотемпературный отпуск служит для получения структуры зернистого перлита в цементуемом слое, что позволяет обеспечить в закаленном состоянии удовлетворительную микроструктуру, высокую твердость и наименьшее количество остаточного аустенита. Отпуск проводится в шахтных печах при температуре 580-600 °С в течение 10-15 ч с охлаждением на воздухе. С целью уменьшения количества остаточного аустенита в слое отпуск иногда повторяют.  [c.774]

В линии химико-термической обработки автомобильного завода без переналадки подвергаются нитроцементации 24 различные детали, значительно отличающиеся по массе и форме из нескольких марок стали (25ХГМ, 25ХГТ, 5Х, Сталь 20, Сталь 35, ЗОХГТ) по следующему технологическому режиму температура по зонам I— 760° С II—III — 860° С IV — 830° С, период толкания 13 мин, общее время нитроцементации 312 мин, закалка в горячем масле (180° С), отпуск при температуре 150—170°С в течение 156 мин.  [c.118]

Процесс химико-термической обработки деталей крупногабаритных подшипников из стали 20Х2Н4А состоит из следующих операций цементация, высокий отпуск, закалка, низкотемпературный отпуск. Подшипники из стали 18ХГТ и 15Г после цементации проходят закалку и низкий отпуск.  [c.599]

Цементация (науглероживание) — процесс химико-термической обработки, обусловливающий насыщение поверхностного слоя стали углеродом. Назначением процесса является получение после термической обработки (закалки и низкотемпературного отпуска) на-углероженных деталей повышенных твёрдости и прочности поверхностного  [c.972]

Существенное влияние на релаксацию остаточных напряжений оказывает выдержка при данной температуре отпуска. При этом, конечно, большое значение имеют релаксационные свойства материала. В крипоустойчивых сталях напряжения снимаются медленнее, а уровень их, при прочих равных условиях, остается выше, чем у менее теплостойких сталей. В ряде случаев от,-пуск невозможен или весьма ограничен. Но даже при низком отпуске изделий, закаленных с нагревом т. в. ч. или прошедших химико-термическую обработку, наблюдается снижение сжимающих остаточных напряжений в закаленном слое (рис. 8.13). При низкотемпературном отпуске снижаются также максимальные растягивающие остаточные напряжения под поверхностью.  [c.289]

Газовому цианированию подвергают изделия сложной конфигурации из конструкционной углеродистой, низко-и среднелегированной сталей, а также инструмент из быстрорежущей стали. Для конструкционной углеродистой и легированной стали гшименяют высокотемпературное газовое цианирование при 800—82о° С с целью повышения твердости и износостойкости, а для быстрорежущей стали — низкотемпературное цианирование при 540—560° С с целью повышения режущих свойств и стойкости инструмента. После газового цианирования производят закалку и низкотемпературный отпуск. Газовое цианирование (иногда называемое нитроцементацией) является одним йз совершенных и широко распространенных видов химико-термичесКой обработки.  [c.186]

Основоположником теории и рациональных методов термообработки является русский ученый Д. К. Чернов (1838—1921 гг.). Он установил, что при нагревании стали ниже линии Ас (см. рис. 26) ее структура и механические свойства не меняются, с какой бы скоростью ее потом не охлаждали, и резко меняются при нагревании выше линии Асг и быстром охлаждении. Это открытие Чернова имело мировое значение. В последующие годы учение Чернова получило дальнейшее развитие, и сейчас разработана теория термообработки. На практике применяют четыре вида термообработки отжиг, нормализацию, закалку и отпуск. Эти виды отличаются друг от друга температурой нагревания, продолжительностью выдержки при этой температуре и скоростью охлаждения по окончании выдерлски. Кроме термообработки используют химико-термическую обработку. Термообработка может быть простой и состоять из одной из указанных операций или может состоять из нескольких операций, например из цементации с закалкой и отпуском.  [c.72]

Термическая обработка. Обычно стали подвергаются термической обработке, отжигу, закалке и отпуску. Применяется также и химико-термическая обработка стали (цементация, цианирование, хромирование, азотирова-ипе), и.меющая целью увеличить поверхностную твердость малоу леродистой стали.  [c.10]

Безмуфельные печи с трубчатыми радиационными нагревателями обеспечивают значительные экономические преимущества повьшйенне на 50% удельной производительности и снижение на 25% удельного расхода жароупорных сталей. В этих агрегатах обеспечивается больщая герметизация рабочего пространства, что особенно важно для последней зоны и камеры подстуживания, в которой детали охлаждаются перед закалкой. Изделия в этом случае вместе с поддонами охлаждаются без контакта с воздухом в контролируемой атмосфере с регулируемым потенциалом углерода, что предохраняет поверхность их от обезуглероживания. В камере подстуживания муфельных печей столь совершенные условия термической обработки невозможно обеспечить, вследствие чего физико-механические свойства изделий снижаются. Весь цикл химико-термической обработки — промывка и отпуск в безму-фельной печи — полностью механизирован и автоматизирован производительность такой печи значительно вьппе, чем муфельной, ибо размеры рабочего пространства не лимитируются шириной муфеля.  [c.634]


Смотреть страницы где упоминается термин Сталь Химико-термическая Отпуск : [c.38]    [c.159]    [c.387]    [c.388]    [c.121]   
Справочник машиностроителя Том 2 (1952) -- [ c.968 ]



ПОИСК



ОТПУСК СТАЛЕ

Отпуск

Отпуская ось

Сталь Отпуск

Химико-термическая и термическая



© 2025 Mash-xxl.info Реклама на сайте