Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скорость движения абсолютного относительного

В технических приложениях чаще всего имеют дело с движением капель в активных газовых потоках, т.е. с такими устройствами, в которых газовый поток сам движется относительно стенок аппарата. В этом случае величина и о характеризует скорость движения капель относительно газа. Если, например, газ движется вниз со скоростью W", то фактическая скорость капель определяется суммой + W". При восходящем движении газа скорость капель относительно стенок канала равна W" -. При равенстве абсолютных значений скорости подъемного движения газа W" и скорости свободного падения капли капля зависает в газовом потоке, поэтому для данного размера капель в приложениях называется скоростью витания. Если скорость восходящего движения газа превосходит скорость витания, то капля уносится газовым потоком.  [c.229]


Траектория, скорость, ускорение и т. д. называются абсолютными, относительными или переносными, смотря по тому, относятся ли они к движению абсолютному, относительному или переносному.  [c.51]

Решение. Нам известна абсолютная скорость пера = Скорость можно рассматривать как геометрическую сумму скорости движения пера относительно бумаги (это искомая скорость и) и переносной скорости г>пер, равной скорости той точки бумаги, которой в данный момент касается перо но модулю Оп(.р = ша.  [c.217]

Сз щественной кинематической характеристикой, влияющей на трение в зацеплении, является относительная скорость зубьев при их перемещении по виткам червяка. На рис. 9.8 показаны скорости движения — абсолютная скорость зубьев колеса — окружная скорость червяка, которую можно рассматривать как переносную скорость зубьев, и — относительная скорость зубьев, т. е. скорость скольжения. Из параллелограмма скоростей следует, что  [c.284]

Скорость VI представляет собой скорость движения парохода относительно воды независимо от того, течет ли вода или она находится в неподвижном состоянии. Следовательно, при движении вниз по течению пароход движется с абсолютной скоростью (т. е. относительно берегов), равной v +v2. При движении парохода вверх по течению абсолютная его скорость равна V2—Vi. Соответственно этому получим систему двух уравнений  [c.110]

Рассмотрим теперь вновь движение точки М. Связь абсолютной и относительной скоростей движения, абсолютного и относительного ускорений определяется полученными выше соотношениями 1(1% Щ1Г) (2.4.8)-(2.4.12)).  [c.96]

Теорема 4. Абсолютная величина нормальной составляющей скорости движения газа относительно ударной волны больше скорости звука перед фронтом и меньше скорости звука за фронтом, т. е. если состояние 1 — перед фронтом, то  [c.47]

В связи с существованием множества инерциальных систем естественно поставить вопрос о некоторой исходной системе, которая была бы абсолютно неподвижной, а все остальные двигались бы в ней с определенными скоростями. Такую систему можно назвать привилегированной. Очевидно, что с помощью наблюдения механических явлений как-то выделить одну из инерциальных систем нельзя, хотя всегда можно найти скорости движения систем относительно друг друга. Однако Ньютон, по-видимому, думал, что неподвижная система существует и она связана с абсолютным пространством. В настоящее время известно, что такое допущение ошибочно, а инерциальные системы физически эквивалентны во всех отношениях, т. е. привилегированной или абсолютно неподвижной системы нет. Анализ этого важного положения выполняется ниже, в части Н, а сейчас достаточно учитывать, что выбор неподвижной и подвижной систем условен.  [c.81]


V — скорость движения потока относительно трубки. Таким образом абсолютное давление внутри трубки равно  [c.103]

Угловые скорости движения звеньев 3 4 относительно звена 2 определятся, если звеньям сообщить угловую скорость —(Й2- В таком случае абсолютная величина относительной угловой скорости Юз2 звена 3 относительно звена 2 равна  [c.314]

В приведенном выше примере движение шара относительно палубы парохода будет относительным, а скорость — относительной скоростью шара движение парохода по отношению к берегу будет для шара переносным движением, а скорость Той точки палубы, которой в данный момент времени касается шар, будет в этот момент его переносной скоростью наконец, движение шара по отношению к берегу будет его абсолютным движением, а скорость — абсолютной скоростью шара.  [c.156]

Таким образом, мы доказали следующую теорему о сложении скоростей при сложном движении абсолютная скорость точки равна геометрической сумме относительной и переносной скоростей. Построенная на рис. 183, б фигура называется параллелограммом скоростей.  [c.157]

Абсолютную угловую скорость /-Г0 звена относительно стойки O)(i)jo находят сложением, угловых скоростей при относительном движении звеньев  [c.135]

Движение точки М (рис. 384) по отношению к неподвижной системе отсчета, которое названо абсолютным движением, является сложным, состоящим из относительного и переносного движений точки. Основная задача изучения сложного движения состоит в установлении зависимостей между скоростями и ускорениями относительного, переносного и абсолютного движений точки.  [c.295]

Откладываем (рис. 418, а) по оси вектор угловой скорости си абсолютного вращения, направляя его так же, как направлен вектор со . Необходимо отметить, что три мгновенных центра скоростей переносного, относительного и абсолютного движений плоской фигуры всегда лежат на одной прямой.  [c.337]

Разложим абсолютное вращение линейки вокруг точки Я па дна составляющих вращения переносное вращение вместе е кривошипом ОС вокруг оси О (Рг) с угловой скоростью = Wq и относительное вращение по отношению к кривошипу с угловой скоростью а>г. Центром этого вращения Р является ось шарнира С, так как точка С является общей для линейки и кривошипа и в относительном движении но отношению к кривошипу не участвует.  [c.341]

Итак, при сложении двух враш,ательных движений вокруг пересекающихся осей абсолютная угловая скорость тела равна геометрической сумме угловых скоростей в первом (относительном) и втором (переносном) движениях.  [c.121]

Поясни.м понятия абсолютного, относительного и переносного движений на примере. Диск вращается равномерно с угловой скоростью (О вокруг оси, перпендикулярной к плоскости диска и проходящей через его центр О. По диаметру АВ диска с постоянной по величине скоростью движется точка УИ (рис. 5.2).  [c.300]

Сложение скоростей. Определение скорости точки в относительном, переносном и абсолютном движениях  [c.311]

Зависимость между абсолютной, относительной и переносной скоростями точки, совершающей сложное (составное) движение, определяется теоремой сложения скоростей, согласно которой абсолютная скорость равна геометрической сущ]е переносной и относительной скоростей  [c.311]

Составить уравнения абсолютного и относительного движений точки А, а также найти абсолютную, относительную и переносную скорости точки.  [c.316]

Второй способ решения быстрее и проще ведет к цели, если требуется определить только скорости в абсолютном, переносном и относительном движениях. Если же необходимо, кроме этих скоростей, найти и уравнения абсолютного, переносного и относительного движений, то целесообразно применить первый способ решения.  [c.318]

Решение. Течение воды является переносным движением. Циркуляция корабля со скоростью Ф) будет относительным движением. Абсолютная скорость корабля определится как геометрическая сумма переносной и относительной скоростей.  [c.346]


В данном случае скорость шара в переносном движении направлена перпендикулярно к плоскости рисунка, причем — = I ЖАГ = sin а. Скорость шара в относительном движении перпендикулярна к стержню ОМ, расположена в плоскости рисунка, причем v j = OM uy — ai. Учитывая, что скорости и взаимно перпендикулярны, найдем квадрат модуля скорости шара в абсолютном движении  [c.504]

Охуг, которая некоторым образом движется относительно неподвижной (рис. 3.6). Движение точки М по отношению к неподвижной системе координат О х у г называется абсолютным, а ее скорость т) и ускорение а — соответственно абсолютной скоростью и абсолютным ускорением. Движение точки М по отношению к подвижной системе координат Охуг называется относительным движением, а ее скорость и ускорение йг называются относительной скоростью и относительным ускорением.  [c.33]

В середине XIX в. Герц предложил теорию, согласно которой эфир полностью увлекается телами при их движении. Эта теория была опровергнута в 1851 г. опытами Физо. Позднее Лоренц развил теорию, основанную на противоположной гипотезе — гипотезе неподвижного эфира. Лоренц предположил, что существует абсолютно неподвижный эфир, сквозь который свободно проходят все двин<ущиеся тела. Наблюдатель в системе, связанной с движущимся телом, должен ощущать эфирный ветер , скорость которого соответствует скорости движения тела относительно неподвижного эфира. Экспериментальные поиски эфирного ветра,  [c.33]

В результате этого своего (относительного) двиягения по отношению в среде 8, соединенного с твердым движением этой среды относительно триэдра 9 Т С (переносного движения), точка Г совершает движение (абсолютное) относительно среды и описывает в пей некоторую траекторию так как точка Г в каждый момент находится на соответствующей оси движения, то эта траектори.<[ лежит на неподвижном аксоиде Л (и пересекает на нем каждую образующую в одной точке). Поэтому скорости V,, и точки Р (абсолютная и относительная) в каждый момент касаются кривых X и а следовательно, и аксоидов Л и .  [c.207]

В каждом из трех движений — абсолютном, относительном и переносном — существует в данный момент своя мгновенная ось и своя угловая скорость. Обозначим эти три угловые скорости через ш, и со и будем их называть абсолюшой, относительной и переносной угловыми скоростями.  [c.264]

Относительная скорость v, есть скорость движения точки относительно подвижной системы координат i, а переносная скорость Ve равна абсолютной скорости точкк Af,, принадлежащей реперу 5 и совпадающей в данный момент времени с точкой М.  [c.24]

Буер, весящий вместе с пассажирами Р = 1962 11, движется пpя oлииeйнo по гладкой горизонтальной поверхности льда вследствие давления ветра на парус, плоскость которого аЬ образует угол 45° с направлением движения. Абсолютная скорость тю ветра перпендикулярна направлению движения. Величина силы давления ветра Р выражается формулой Ньютона Р = к8и со5 (р, где ф — угол, образуемый относительной скоростью ветра и с перпендикуляром N к плоскости паруса, 5 = 5 — площадь паруса,  [c.206]

Для определения модуля угловой скорости со абсолютного вращения плоской фигуры III воспользуемся скоростью точки Рг — мгно-венгюго центра скоростей относительного движения. Так как относительная скорость точки Рг равна нулЕо, то абсолютная и перерюсная скорости этой точки равны между собой.  [c.335]

Так как точка М выбрана произвольно, то абсолютная скорость любой точки плоской фигуры III направлена перпендикулярно к отрезку РсРг, а ее модуль равен произведению расстояния между мгновенными центрами скоростей переносного и относительного движений па модуль угловой скорости одного из составляющих вращений (рис. 419, а и б). Следовательно, скорости всех точек фигуры III геометрически равны, т. е. мгновенный центр скоростей абсолютного  [c.339]

Точка М движется относительно тела D. По заданным уравнениям ошосительного движения точки М п движения тела D определить для момента времени t = ty абсолютную скорость и абсолютное ускорение точки М.  [c.60]

Это замечание касается вращения тела относительно неподвижной оси /. Для подсчета кинетической энергии тела в этом случае нет нуж ы использовать теорему Кёнига даже в том случае, когда центр инерции тела не лежит на оси и имеет скорость, отличную от нуля. Действительно, можно выбрать начало координат на неподвижной оси и рассуждать точно так же, как это делалось в конце замечания 5° при подсчете То-, поскольку формула (8) определяет в этом случае не относительную, а абсолютную скорость, если считать, что рг — расстояние от i-й точки до оси вращения. Поэтому в случае движения тела относительно неподвижной оси  [c.172]

Величины, относящиеся к абсолютному движению точки, будем снабжать индексом а, к относительному — индексом г, к переносному — ИНД61СС0М е (например, — скорость точки в относительном движении, w , — ускорение в переносном движении и т. д.).  [c.300]

Решение. Движение камня А можно изучать по отношению к двум системам отсчета по отношению к неподвижной системе Оху (абсолютное движение) и по отношению к подвижной системе О х у, связанной с кулисой (относительное движение). Абсолютным движением камня является его движение по окружности с центром в точке О, и, следовательно, абсолютная скорость у направлена иерпендикулярно к кривошипу О А и равна по величине со,/. Относительное движение — это скольжение камня по прорези кулисы, поэтому относительная скорость v, точки А направлена по кулисе.  [c.252]

Для главного вектора и главного момента количеств движения отводятся матрицы QB и К для угловой скорости осей системы, относительной угловой скорости осей координат относительно осей системы и абсолютной угловой скорости осей координач - соответственно матрицы OM,AL, ОМВ. Назначение остальных массивов нетрудно установить, сопоставив обозначения и идентификаторы.  [c.51]



Смотреть страницы где упоминается термин Скорость движения абсолютного относительного : [c.124]    [c.503]    [c.100]    [c.183]    [c.232]    [c.162]    [c.448]    [c.163]    [c.198]    [c.35]    [c.504]   
Справочное пособие по гидравлике гидромашинам и гидроприводам (1985) -- [ c.186 ]



ПОИСК



Абсолютное движение и относительное движение

Движение абсолютное

Движение абсолютное относительное

Движение относительное

Зависимость между поступательными и угловыми скоростями твёрдого тела в абсолютном, относительном и переносном движениях

Зависимость между скоростями точки в абсолютном и относительном движениях

Относительное движение скорость

Относительность движения

Скорости и ускорения точки в относительном, переносном и абсолютном движении

Скорость абсолютная

Скорость движения

Скорость движения абсолютного

Скорость относительная

Сложение скоростей. Определение скорости точки в относительном, переносном и абсолютном движениях



© 2025 Mash-xxl.info Реклама на сайте