Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Условия граничные для кинетического при скольжении

В настоящей монографии рассматриваются главным образом задачи, требующие кинетического описания, для решения которых неприменимы методы газодинамики и необходимы новые методы, подходы и образы. Основное место уделено кинетическому уравнению Больцмана, изучению его свойств и методов решения. В то же время большое внимание уделено выводу из кинетического уравнения Больцмана уравнений газовой динамики и соответствующих им граничных условий (условий скольжения), установлению области нх применимости.  [c.5]


Отметим, что это приближение нулевого порядка точнее решения уравнений сплошной среды (даже если для уравнений сплошной среды использовать граничные условия со скольжением). В самом деле, даже в нулевом приближении 1) кинетические пограничные -слои суш ествуют вблизи стенок, 2) в основной части потока массовая скорость удовлетворяет уравнению количества движения Навье — Стокса, но соответствуюш ие граничные условия на стенке, полученные экстраполяцией, пе являются обычными условиями скольжения, а содержат в себе члены второго порядка  [c.189]

Как было отмечено, существует несколько. кинетических моделей, описывающих взаимодействие между дислокациями и примесными атомами. Однако все они имеют много упрощений. Точного аналитического решения задачи для диффузионного и дрейфового потока примесных атомов к дислокациям в реальных граничных условиях до сих пор не получено не только для динамического деформационного старения, но и для более простых случаев термического старения и статического деформационного старения [И, с. 161]. Н. М. Власов и Б. Я. Любое [11, с. 193] в результате рассмотрения кинетики образования атмосфер примесных атомов вокруг скопления краевых дислокаций в плоскости скольжения указывают, что диффузионное уравнение решается в приближении слабого взаимодействия, т. е. когда дрейф атомов примеси в поле напряжений скопления краевых дислокаций считается малым возмущением. Отмечено, что аналитическое решение задачи вне рамок приближения слабого взаимодействия, т. е. в реальных граничных условиях, связано с большими математическими трудностями. Наиболее вероятной моделью применительно к динамическому деформационному старению является,  [c.240]

Изображенные в нижней половине фиг. 4 скачки температуры (7, 8) и скорости скольжения (9, УО) имеют сугубо кинетическое происхождение и информация о их величине необходима для моделирования подобного типа течений в рамках уравнений Навье-Стокса, когда эти величины должны задаваться в качестве граничных условий.  [c.165]

При постановке граничных задач применяем наряду с традннионным условием прилипания жидкости условия скольжения [60, 70-72]. Явлсиие проскальзывания жидкости на стенке наблюдается при чечении неньюю-новских жидкостей типа (1.6), (1.7) - растворы и расплавы полимеров, а также при движении ньютоновской жидкости (например, вода, керосин) вдоль пористой границы. Граничные условия скольжения и температурного скачка применяем в достаточно общем виде, по своей структуре аналогичном тому, что получен в кинетической теории газов [73]  [c.8]


Согласно закону Фурье последнее эквивалентно заданию производной от температуры по направлению нормали к поверхности обтекаемого тела или канала. В такого рода граничных условиях заложено предположение об отсутствии скачка температур между обтекаемой стенкой и прилипающими частицами газа. Эти граничные условия хорошо подтверждаются опытными исследованиями в неразреженных газах (точнее, при малой по сравнению с размерами обтекаемых тел или каналов величине длины свободного пробега молекул). В случае же разреженных и особенно сильно разреженных газов указанные граничные условия теряют свой смысл. В разреженных газах наряду со скольжением газа образуется скачок температур, который, так же как и скорость скольжения, можно принять пропорциональным температурному перепаду в газе вблизи стенки. В сильно разреженных газах понятие температуры (так же как и скорости) нуждается в некотором уточнении, которое дается в кинетической теории газов.  [c.639]

В предельном случае малых длин пробега мы приходим к задачам, которые могут быть решены в рамках теории сплошной среды или, точнее, с применением уравнений Навье — Стокса. По существу, это задачи обычной газовой динамики. Однако по установившейся традиции некоторые из них изучаются динамикой разреженных газов. В число таких задач входят, например, некоторые задачи о вязких течениях при малых числах Рейнольдса, о течениях с взаимодействием пограничного слоя с невязким потоком, о близких к равновесным течениях с релаксацией возбуждения внутренних степеней свободы, о течениях со скольжением и температурным скачком на стенке и т. д. К решению этих задач могут быть привлечены методы газовой динамики. В то же время эти задачи, решаемые в рамках теории сплошной среды, тесно связаны с кинетической теорией, так как только с помощью кинетической теории, из анализа уравнения Больцмана, можно обоснованно вывести уравнения Эйлера и Навье—Стокса и их аг алоги для рела-ксирующих сред, установить область их применимости и снабдить их правильными начальными и граничными условиями и коэффициентами переноса.  [c.5]

Метод элементарных решений связан с методом Чепмена — Энскога по крайней мере с двух точек зрения. Во-первых, разложение решения на дискретную и непрерывную части отражает (по крайней мере в простейших модельных уравнениях) отделение решения Чепмена — Энскога (справедливого вдали от твердых границ и некоторого начального состояния) от решения в переходной области, описываемой кинетическими слоями. Во-вторых, элементарные решения особенно эффективны при исследовании задач связи для методов Гильберта и Чепмена — Энскога (особенно для установления граничных условий). Это продемонстрировано нахождением коэффициента скольжения для модельного уравнения БГК. Для более общих модельных уравнений задачу определения граничных условий аналитически решить, вообще говоря, нельзя. Но всегда можно получить довольно точное описание решения, оценивая коэффициенты разложений или поправки к модельным уравнениям низшего порядка. В частности, отделяя нормальные и поперечные степени свободы, можно найти в квадратурах температурный скачок (Черчиньяни [10] гл. 6), результат оказывается очень близким к точному.  [c.214]

Сомнения вызывали не столько сами уравнения, сколько условия прилипания на твердых стенках. Эти условия являются чисто опытными, до сих пор не имеющими твердого теоретического обоснования. Между тем не исключено, что малое скольжение, допускаемое кинетической теорией, в некоторых случаях способно вызвать, как и малая вязкость, немалые эффекты. Самое повышение порядка уравнений, учитывающих вязкое трение, могло явиться источником теоретической неудовлетворенности. Так, если исходить при выводе уравнений движения из кинетической теории газов, где уравнения Навье — Стокса получаются в качестве второго приближения, то возникает вопрос о постановке граничных условий, папри-мор для третьего приближения — уравнений Барнета. Что же, кроме скорости, надо еще задавать и трение на стейке Сама постановка подобного вопроса говорит о неблагополучии ситуации.  [c.6]


Вопрос об условиях существования и единственности решения составленной системы уравнений до сих пор ие решен. Соответствующие условия обычно указываются в каждом отдельном случае. В число граничных условий, так же как и е несжимаемой вязкой жидкости, входит равенство нулю скорости на неподвижной твердой границе, а при движении тела в газе совпадение скорости частиц газа, прилегаюш,их к поверхности тела, с соответствующими скоростями точек поверхности тела. Как уже упоминалось в гл. VIII, в разре женных газах условие прилипания газа к твердой стенке не имеет места в этих условиях наблюдается скольжение газа по стенке, которое можно считать пропорциональным производной по нормали к поверхности обтекаемого тела от касательной составляющей скорости. Не приходится и говорить о том, что условие прилипания совершенно теряет свою силу в сильно разреженных газах, когда длина свдбодного пробега молекулы становится сравнимой с линейными разм.ерами тела. В этом случае газ уже нельзя рассматривать как сплошную среду. Такого рода, движения газа выходят за рамки механики в узком смысле слова и составляют предмет изучения кинетической теории газов. Заметим, что вопросы обтекания тел разреженными газами приобретают в последнее время практическое значение в связи с полетами ракетных снарядов иа больших высотах, где разрежение воздуха очень велико.  [c.806]


Смотреть страницы где упоминается термин Условия граничные для кинетического при скольжении : [c.480]    [c.807]    [c.160]   
Динамика разреженного газа Кинетическая теория (1967) -- [ c.329 , c.332 ]



ПОИСК



Граничные условия

Условие скольжения

Условия граничные для кинетического



© 2025 Mash-xxl.info Реклама на сайте