Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вязкая жидкость в движении между вращающимися цилиндрами

Задача о движении вязкой жидкости в пространстве между двумя коаксиальными вращающимися цилиндрами была положена в основу гидродинамической теории смазки Н. П. Петровым (1883)1).  [c.80]

Отсутствие любого из членов, включающих вязкость, в уравнении энергии для безвихревого установившегося или неустановившегося потока в действительности означает, что в любой области мгновенная скорость диссипации энергии, вызванной вязкостью, точно компенсируется мгновенной скоростью совершения работы вязких сил на границе этой области. В частности, если скорость обтекания безвихревым потоком твердого тела (поверхность которого движется в соответствии с теорией потенциального течения) постоянна, диссипация энергии во всей области потока в точности равна скорости, с которой совершается работа вязкого сдвига по движущейся поверхности твердого тела. Примерами безвихревого движения вязкой жидкости могут служить движение жидкости в неограниченном пространстве, вызванное вращением цилиндра бесконечной длины, и движение между концентрическими цилиндрами, вращающимися с угловыми скоростями, обратно пропорциональными квадратам их радиусов. Это простые вращательные движения, которые могут быть воспроизведены на практике, поскольку скорость, налагаемая твердой границей, постоянна.  [c.200]


Неустойчивость движения жидкости может проявляться не только в переходе от ламинарного режима к турбулентному, но и в резком изменении макроскопической структуры потока. Например, при движении вязкой жидкости между соосными вращающимися цилиндрами линиями тока могут служить плоские кривые в виде концентрических окружностей (см. п. 8.4). Но при определенных условиях такой характер течения может нарушиться, и в зазоре между цилиндрами возникнут крупные кольцевые вихри с осями, параллельными окружной скорости. Сечения таких вихрей плоскостью, проходящей через ось вращения, показаны на рис. 9.4.  [c.363]

С другой стороны, для вязко-пластичного бингамовского тела, отличающегося от обычной вязкой жидкости наличием предельного напряжения сдвига (предела текучести удалось разрешить ряд задач, а именно осевое движение в цилиндрическом капилляре [7], движение между двумя вращающимися коаксиальными цилиндрами [8, 9], движение между двумя вращающимися концентрическими сферами [10], осевое движение между двумя коаксиальными цилиндрами и течение в плоском капилляре [11].  [c.31]

Действительно, рассмотрим плоское движение вязкой жидкости между двумя вращающимися с разными угловыми скоростями ю, со коаксиальными цилиндрами соответственно с радиусами Н и Я (штрих относится к внешнему цилиндру). Считая движение стационарным и происходящим по концентрическим окружностям, расположенным в плоскостях, перпендикулярных к общей оси цилиндров, из соображений симметрии заключим, что (в настоящем параграфе обычное обозначение азимутального угла е заменим на ср)  [c.412]

Задача о круговом движении частиц вязкой жидкости между двумя вращающимися соосными цилиндрами была рассмотрена нами в 8 главы III при условии полного прилипания жидкости к стенкам. В работе же Н. П. Петрова эта задача решалась при условии частич-  [c.190]

Пример 3. Результаты предыдущего примера позволяют решить задачу о движении вязкой жидкости между двумя концентрическими, вращающимися круговыми цилиндрами. Предполагая движение установившимся, а линии тока — круговыми, получим, как и в предыдущем примере,, распределение скоростей в виде  [c.542]

Изучение возникновения и развития неустойчивостей в потоках вязкой несжимаемой жидкости представляет сложную задачу, которая интересует исследователей в нескольких отношениях. Во-первых, необходимо сформулировать условия, при которых поток теряет устойчивость, и, во-вторых, ответить на вопрос, что происходит с потоком после потери устойчивости и каков характер возникающих вторичных течений. Наиболее изученным примером движения вязкой несжимаемой жидкости, для которого удается дать ответы на поставленные вопросы, является классический пример сдвигового течения между соосными вращающимися цилиндрами. Это течение было подробно изучено как теоретически, так и экспериментально Тейлором [1]. Оно является простейшим примером стационарного течения вязкой жидкости, показывающим, что при определенных условиях с ростом числа Рейнольдса происходит потеря устойчивости основного одномерного течения и возникают вторичные течения. Изучение течений вязкой несжимаемой жидкости, которые сопровождаются потерей устойчивости, чрезвычайно полезно, так как помогает выработать понимание происходящих в жидкости процессов и предсказывать характер течения жидкости в сходных ситуациях.  [c.52]


Постановка задачи. Рассматривается нестационарное течение вязкой несжимаемой жидкости между соосными, бесконечно длинными цилиндрами, которые совершают равноускоренное вращение вокруг своей оси как твердое тело. В начальный момент времени ( = 0) цилиндры и жидкость, расположенная между ними, покоятся. Рассмотрение движения жидкости проводится в цилиндрической системе координат (г, ф, 2), связанной с вращающимися цилиндрами. Из-за действия силы углового ускорения при I > О жидкость приходит в нестационарное одномерное движение. Здесь г -координата вдоль оси цилиндров, ф - угловая переменная, г - координата, нормальная к поверхности цилиндров. Вектор скорости V = (и, и, н ) имеет компоненты и - вдоль нормали к поверхности, V - вдоль углового направления vlw - вдоль оси.  [c.52]

Магнитное поле стабилизирует также течение вязкой несжимаемой жидкости между двумя вращающимися концентрическими цилиндрами. Эта задача была рассмотрена в работе для случая, когда магнитное поле направлено вдоль оси цилиндров и цилиндры вращаются в одинаковом направлении. В предположении, что разность радиусов цилиндров мала по сравнению с самими радиусами, получена зависимость между критическим числом Тэйлора, при котором движение становится неустойчивым, и определенным выше безразмерным параметром Q = М . Критическое число Тэйлора быстро растет с ростом параметра С . Стабилизирующее действие магнитного поля, согласно результатам этой работы, настолько велико, что в поле с напряженностью около 10 эрстед может быть обнаружено уже в электролитах.  [c.43]

Об устойчивости движения вязкой жидкости в зазоре между вращающимися концентрическими цилиндрами относительно неосесимметричных возмущений. Докл. АН БССР, 25, JSfe 6, 899—902.  [c.667]

Советские исследования по динамике вязкой жидкости при малых и средних значениях чисел Рейнольдса относятся главным образом к внутренним задачам движениям между вращающимися цилиндрами, гидрогазодинамической теории подшипников и подвесов, движениям в каналах с плоскопараллельными стенками при наличии внезапного расширения сечения канала и углублений в его стенках, к задачам распространения вязких струй в пространстве, затопленном той же жидкостью, а также к задачам тепловой конвекции. При решении этих задач использовались как разнообразные аналитические методы (разложения в ряды по малым параметрам, асимптотические разложения), так и приемы непосредственного интегрирования уравнений на ЭЦВМ.  [c.511]

Точные решения уравнений Навье — Стокса для плоской неизотермической задачи о движении вязкой жидкости и газа вокруг вращающегося цилиндра в безграничном пространстве и в полости между двумя вращающимися цилиндрами бесконечной длины были впервые даны Л. Г. Степанянцем (1953). Появление электронно-вычислительных машин открыло возможность численного изучения более сложных, неплоских движений вязкой жидкости между вращающимися цилиндрами. Из рабог этого вычислительного направления отметим исследования Н. П. Жидкова, А. А. Корнейчука, А. Л. Крылова и С. Б. Мосчинской (1962), в которых получено численное решение уравнений Навье — Стокса для случая когда движение вязкой жидкости зависит от расстояния до общей оси вращения цилиндров и от азимута, и А. Л. Крылова и Е. К. Произволо-вой (1963), где найдено решение аналогичной задачи, зависящее от того же расстояния и координаты, параллельной оси цилиндров. Л, А. Дорфман и Ю. Б. Романенко (1966) также численным методом рассмотрели движение в неподвижном стакане, доверху заполненном вязкой жидкостью приводимой в движение вращающейся крышкой, соприкасающейся с жидкостью. И в этом случае обнаружено наличие зон вторичных течений в виде замкнутых линий тока, расположенных в меридиональных плоскостях (рис. 1),  [c.511]

Движение жидкости между двумя бесконечными коаксиальными цилиндрами, вращающимися с постоянными угловыми скоростями вокруг их общей оси, рассматривалось Ландау и Лифши-цем [40]. Предметом многих исследований была устойчивость таких течений [41]. Решение более сложной задачи о движении вязкой жидкости в узком зазоре между цилиндрами, оси которых параллельны, но не совпадают, можно найти в книгах Кочина, Кибеля и Розе [37] и Зоммерфельда [55].  [c.407]


Будущим теоретическим исследованиям по устойчивости ламинарных движений предстоит отразить основные детали тех сложных, граничащих со случайными движений, которые возникают при потере устойчивости изучаемого начального движения, а пока внимание многих ученых привлекает гидродинамический эксперимент, на современном уровне развития позволяющий глубоко проникнуть в процессы перехода ламинарных движений в турбулентные. Появившиеся в последнее десятилетие исследования в этом направ-.тении показывают, что нелинейные эффекты в вязких потоках крайне своеобразны. Чрезвычайно характерны в этом смысле явления, возникающие в круглой трубе при переходе рейнольдсова числа через критическое значение. Явления эти аналогичны и другим случаям ламинарного движения вязкой жидкости, в частности куэттовскому движению между движущимися параллельными плоскостями, между поверхностями вращающихся соосных цилиндров и в пограничных слоях.  [c.525]

Наряду с движением вязкой жидкости в круглых цилиндрических трубах Д. Колзом были изучены также и переходные движения в пространстве между соосными вращающимися цилиндрами ). При переходе через некоторое значение рейнольдсова числа устойчивое вначале круговое движение частиц жидкости в плоскостях, перпендикулярных оси вращения, сменяется движением с ячеистой структурой замкнутых вторичных течений, расположенной периодически в направлении, параллельном оси вращения. Такое — его обычно называют тэйлоровским — движение образуется в случае доминирующего вращения внутреннего цилиндра. В случае же доминирующего значения вращения внешнего цилиндра устойчивое круговое движение частиц переходит в спиральное, смешанное ламинарно-турбулентное движение. Эти периодически расположенные в пространстве спирали, сохраняя свою форму и взаимное расположение, вращаются как одно целое вокруг общей оси цилиндров с угловой скоростью, близкой к среднему арифметическому угловых скоростей цилиндров.  [c.527]

Изменяя угловые скорости вращения внутреннего и внешнего цилиндра, можно отчетливо наблюдать процессы возникновения и разрушения различных режимов движений вязкой жидкости между вращающимися цилиндрами, от периодических тэйлоровских до двоякопериодических спиральных структур. Большой интерес заслуживает факт связи характеристик турбулентности в пробках с тэйлоровскими вторичными течениями, которые, таким образом, служат конечными возмущениями, способствующими переходу от ламинарного движения к турбулентному ).  [c.527]

Стоксу принадлежит также решение задачи о движении вязкой жидкости, между вращающимися коаксиальными цилиндрами (в частности, он обнару-1жил ошибку, допущенную в Началах Ньютона при решении задачи об осесимйетричном вращении бесконечной вязкой жидкости).  [c.70]


Смотреть страницы где упоминается термин Вязкая жидкость в движении между вращающимися цилиндрами : [c.135]    [c.545]    [c.508]   
Оптический метод исследования напряжений (1936) -- [ c.244 ]



ПОИСК



Вращающаяся жидкости

Вязкая жидкость в движении

Движение вязкой жидкости

Движение вязкой жидкости между двумя вращающимися соосными цилиндрами

Движение жидкости между вращающимися цилиндрами

Движение цилиндра

Движение цилиндра в жидкости

Жидкость вязкая

Цилиндр вращающийся



© 2025 Mash-xxl.info Реклама на сайте