Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Комбинирование метода конечных разностей и МГЭ

Примеры задач, решенных комбинированием метода конечных разностей и МГЭ  [c.404]

Другие примеры гибридных решений, полученных комбинированием метода конечных разностей и МГЭ, можно найти в работах [15—24], а комбинированием метода конечных элементов и МГЭ — в работах [1—13].  [c.410]

Средние установившиеся температуры определяют по уравнению теплового баланса тепловыделение за единицу времени приравнивают теплоотдаче. При расчете теплоотдачи пользуются ее усредненными коэффициентами. Для решения более сложных тепловых задач (установления температурных полей в деталях машин, определения неустановившихся температур) используют методы, рассматриваемые в теории теплопередачи, в том числе методы подобия, комбинирования нз точных решений для элементов простых форм, методы конечных разностей и конечных элементов.  [c.18]


Как уже отмечалось, за последние годы значительное внимание было уделено решению задачи о поверхностном дефекте в форме полуэллипса в пластине конечной ширины. Были построены численные решения с применением комбинированного метода, метода граничных интегральных уравнений, метода конечных разностей и метода конечных элементов. В трехмерном варианте комбинированного метода [55] для решения задачи о поверхностных дефектах используется общее решение (42) для эллиптической трещины в сочетании с программой метода конечных элементов для пространственных задач.  [c.41]

Подобного рода задачи могут быть реализованы либо численными методами (методом конечных разностей, методом конечных элементов и т.п.), либо комбинированием аналитических и численных методов.  [c.302]

Из анализа методов численного расчета электромагнитных параметров индукционных систем (см. главу 2) можно предположить, что наиболее эффективным и экономичным способом расчета будет комбинированный метод, при котором расчет входных параметров индукторов (внешняя задача) производится на базе метода интегральных уравнений, а расчет распределения электромагнитного и температурного поля в загрузке (внутренняя задача) — на базе метода конечных разностей (39, 133].  [c.227]

Уравнения (1. 69)—(1. 73) решались в работе [59] численно с помощью общего конечно-разностного метода. Дискретизированные формы уравнений получаются путем интегрирования уравнений сохранения по смежным контрольным объемам вокруг каждого узла. Конвективные члены аппроксимируются конечными разностями против потока , и разностные уравнения решаются итерационным методом Гаусса—Зайделя. В работе [59] принята комбинированная сетка — прямоугольная (сетка В) — ъ ядре потока и полярные (сетки А, С) для пристенной области, как это показано на рис. 1.39 для шахматного пучка. Значительные сложности при решении рассматриваемой задачи возникают при задании граничных условий.  [c.50]

Жельвина решение 101, 162, 276 Кирхгофа йнтегральное уравнение с запаздывающим временем 298 Колебания воды в гавани (заливе) 305—306, 406—407 Консолидация 282—288 Комбинирование метода конечных разностей и МГЭ 404—410  [c.487]

Математические модели называют функциональными, если они отражают процессы, протекающие в объекте при его функционировании, или структурными, если они отражают топологические или геометрические свойства объекта. Типичными функциональными моделями на микроуровне являются дифференциальные уравнения в частных производных с заданными краевыми условиями. Для их решения в САПР применяют методы конечных разностей или конечных элементов. Функциональные модели на макроуровне представляют собой обыкновенные дуфференциальные уравнения. Наибольшее распространение для их решения получили неявные или комбинированные методы численного интегрирования. Для моделирования на метауровне наравне с обыкновенными дифференциальными уравнениями используют модели массового обслуживания и логические уравнения.  [c.80]


Имеется сравнительно мало работ, посвященных большим прогибам прямоугольных ортотропных пластин (даже однородных и симметричных). Среди них следует отметить работу Ивинского и Новинского [77], в которой рассматривались круглые орто-тропные пластины, нагруженные нормальным давлением. Авторы использовали систему упрощающих гипотез, предложенных для изотропных пластин Бергером [26] и распространенных на орто-тропные пластины. На основе метода конечных разностей Базу и Чапман [21] рассмотрели прямоугольные пластины, нагруженные давлением, а Аалами и Чапман [1 ] — пластины при комбинированном воздействии давления и осевых усилий. Замкнутое решение для случая цилиндрического изгиба с постоянной кривизной было получено Пао [111 ].  [c.190]

Защемленные или свободные по контуру пластины. Точного решения для данного случая в замкнутом виде получить не удается. Здесь можно применять различные приближенные подходы вариационные методы (Релея, Ритца, Бубнова—Галеркина. и др.), численные методы (конечных разностей, конечных элементов), комбинированные методы и т. д. Так, по формуле Релея основная частота  [c.205]

В принципе эти методы могут быть применены к любой задаче, для которой дифференциальное уравнение или линейно, или линейно относительно приращений [44—49]. В задачах, сводящихся к эллиптическим дифференциальным уравнениям, решения получаются сразу, в то время как для параболических и гиперболических систем уравнений должны быть введены процессы продвижения во времени. Таким образом, охватывается очень широкий класс физических задач при помощи прямых или непрямых формулировок МГЭ могут быть решены, например, задачи об установившемся и неустановившемся потенциальных течениях, задачи статической и динамической теории упругости, упругопластичности, акустики и т. д. [8—49]. МГЭ может также быть использован в сочетании с другими численными методами [44], такими, как методы конечных элементов или конечных разностей, т. е. в смешанных формулировках. Соответствующие комбинированные решения почти неограниченно расширяют область применения методов, ибо МГЭ обладает четко выраженными преимуществами для областей больших размеров, в то время как методы конечных элементов являются удобным средством включения в такие системы объектов конечного размера или уточнения поведения решения в зонах быстрого изменения свойств. Более подробное сравнение особенностей этих методов будет дано в следующем параграфе.  [c.16]

Мы полагаем, что в предыдущих главах нам удалось иродемонст-рировать, сколь эффективным вычислительным аппаратом для решения задач в дву- и трехмерных областях сложной формы является МГЭ. С другой стороны, такие методы, как метод.конечных элементов или конечных разностей, обладают несомненной привлекательностью в случае ограниченных областей и областей с сильно нелинейными геометрическими или материальными характеристиками. Таким образом, для некоторых задач может оказаться весьма плодотворным использование комбинированных методов решения, лолучаемые при помош,и этих методов, часто называются гибридными решениями.  [c.388]

Численное решение на ЭВМ всей системы дифференциальных уравнений в частных производных для газовой и жидкостной фаз включает пошаговое интегрирование в направлении г от начальных значений, заданных в плоскости 2о вычислительной программой L1SP. В каждой последующей плоскости 2 вычисляется совместное решение для всех переменных во всех узловых точках расчетной сетки (г, 0) с использованием комбинированной схемы прогноза с коррекцией. Для большинства уравнений применяется конечно-разностный метод переменных направлений с использованием центральных разностей по г и 9. На этапе прогноза используются линеаризованные конечно-разностные аналоги этих уравнений — явные по г и неявные по 9. Отдельные подпрограммы решают каждое из конечно-разностных уравнений, а также вычисляют связи уравнений и физические свойства газа в зависимости от соотношения компонентов. Использование отдельных подпрограмм обеспечивает удобство при введении требуемых изменений в модели различных физических процессов. Из-за практических ограничений в отношении объема памяти ЭВМ и времени счета программа 3-D OMBUST содержит не более 15 круговых и 7 радиальных линий расчетной сетки и не более 12 диаметров капель.  [c.158]


Однако применение явных схем метода чередующихся направлений для решения задач гидродинамики ограничено по двум причинам. Во-первых, хотя для внутренних точек конечно-разностная схема (3.316) является явной, в целом эта схема фактически будет неявной из-за граничных условий. При первом направлении обхода по схеме (3.316а) должно быть известно значение с (д+1)-го временного слоя при втором направлении обхода по схеме (3.3166) должно быть известно значение где / = maxi. Это обстоятельство не вызывает осложнений в случае задач теплопроводности, где температуры или градиенты температуры на границах, как правило, известны для всех моментов времени. Но значения вихря на стенке не известны и, как уже было отмечено при обсуждении неявных схем метода чередующихся направлений, это вызывает затруднения. Во-вторых (и это гораздо важнее), если данная схема комбинируется с другими схемами и в ней для конвективных членов используются какие-либо варианты аппроксимации из схемы с разностями против потока, схемы с разностями вперед по времени и центральными разностями по пространственным переменным, схемы чехарда и явной схемы метода чередующихся направлений, то полученная комбинированная схема либо оказывается безусловно неустойчивой, либо для нее опять появляются ограничения вида 1 и /г ), характерные для явных схем. Единственной сравнительно успешной комбинацией является комбинация схемы, в которой по обоим чередующимся направлениям обхода точек используются разности против потока для конвективных членов и явной схемы метода чередующихся направлений с осреднением для диффузионных членов (см. Ларкин [1964])  [c.148]


Смотреть страницы где упоминается термин Комбинирование метода конечных разностей и МГЭ : [c.388]    [c.84]   
Методы граничных элементов в прикладных науках (1984) -- [ c.404 , c.410 ]



ПОИСК



Комбинирование метода конечных

Конечные разности

Метод комбинированный

Метод конечных разностей

Примеры задач, решенных комбинированием метода конечных разностей и МГЭ

Разность фаз



© 2025 Mash-xxl.info Реклама на сайте