Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Контактная коррозия магниевых сплавов

Контактная коррозия магниевых сплавов 2—12  [c.506]

Особую заботу о контактной коррозии надо проявлять в тех случаях, когда конструкция содержит детали из магниевых сплавов. Обладая наиболее отрицательным потенциалом среди применяемых в технике материалов, магниевые сплавы в сочленениях являются, как правило, анодами и подвергаются разрушению. По данным работы [55], наблюдалась сильная коррозия магниевых сплавов в туманных камерах при контактировании их с углеродистыми и нержавеющими сталями, а также с оцинкованным железом и бронзой.  [c.138]


Контактная коррозия в атмосферных условиях в сильной степени зависит от состава атмосферы. Так, например, коррозия магниевого сплава МЛ5 в контакте с алюминиевым сплавов В95 при переходе от промышленной атмосферы к морской увеличивается в несколько раз. Аналогичное явление наблюдается для многих пар. В атмосферных условиях не возникает контактной коррозии между медью, серебром и золотом, между железом, углеродистыми сталями, свинцом и оловом, между алюминием цинком и кадмием.  [c.107]

Несмотря на разность потенциалов цинк и кадмий являются равноценными по защитному действию от контактной коррозии даже в случае контакта с магниевыми сплавами. Коррозионная стойкость кадмиевых и цинковых покрытий приведена в табл, 8 [15].  [c.86]

При соединении деталей из магниевых сплавов с деталями из других материалов следует учитывать высокий коэффициент термического расширения сплавов, а также возможность возникновения контактной коррозии и агрессивности неметаллических материалов по отношению к магнию.  [c.130]

Не допускаются непосредственные контакты детален из магниевых сплавов с деталями из алюминиевых сплавов (кроме сплавов системы А1—Mg), с деталями из меди и медных сплавов, никеля и никелевых сплавов, из стали и благородных металлов, а также с деревом и текстолитом вследствие появления контактной коррозии.  [c.130]

Фретинг-эффект, Особое значение в усталостной прочности титановых сплавов имеет фретинг-эффект, или контактная коррозия, в местах сопряжения. Наличие контактного трения при циклическом нагружении у всех металлов приводит к заметному снижению усталостной прочности, особенно в коррозионных средах. Титановые сплавы в этом отношении мало отличаются от сталей, близких к ним по прочности [761. Возникающее контактное трение (в местах заделок, прессовых посадок, креплений и т. п.) резко снижает усталостную прочность, действуя подобно концентратору напряжений. Степень снижения усталостной прочности в основном зависит от сопряженного материала, вызывающего фретинг-эффект, удельного давления в месте сопряжения и окружающей среды. Удельное давление [761 оказывает сильное влияние только при его низких значениях. В прочных креплениях или плотных посадках при удельных давлениях более 3—5 кгс/мм усталостная прочность мало изменяется. Так, по данным работы [76], прессовая посадка втулки с удельным давлением 5 кгс/мм снижает усталостную прочность технически чистого титана с 32 до 11,2 кгс/мм . Дальнейшее увеличение удельного давления посадки до 20 кгс/мм снизило предел усталости до 10,3 кгс/мм . В среднем предел усталости при наличии фретинг-эффекта ((т /) у титановых сплавов на воздухе при контактировании с однородным сплавом составляет 20—40% от исходного предела усталости, т. е. (tI i = (0,2- -0,4)(Т 1. При контактировании с более мягкими материалами (медные, алюминиевые или магниевые сплавы) это соотношение повышается и достигает ali = 0,6(T i. Повышения значения до (O,5-hO,6)0 i можно добиться анодированием поверхности или покрытием пленкой полимеров, т. е. благодаря улучшению условий трения.  [c.154]


В печах с контролируемой атмосферой азота, аргона или в вакууме паяют изделия из магния контактно-реактивным способом. Для этого поверхность под пайку покрывают слоем металла (меди, никеля), который образует с магнием легкоплавкую эвтектику при 450—600 °С. С целью повышения стойкости магниевых сплавов против коррозии поверхность их после пайки часто анодируют. При определении оптимальных режимов пайки магниевых сплавов необходимо иметь в виду, что при 300—400 С происходит разложение гидридов оксида магния, что приводит к образованию пористости.  [c.542]

Цинкование стали делает ее анодной по отношению ко всем изученным нами сплавам, за исключением магниевого сплава МЛ1. Хромирование обычной стали хотя и снижает заметно ток контактной коррозии и делает сталь более благородной, однако она еще продолжает работать в качестве анода в контакте с такими металлами, как анодированный с последующим наполнением водой и хромпиком сплав Д16,, латунь в состоянии поставки, а также посеребренная и никелированная сталь, бериллиевая и фосфористая бронзы.  [c.117]

Изменение механических свойств листового материала из магниевого сплава МЛ1, находившегося в контакте с рядом металлов, после одного года пребывания в промышленной атмосфере г. Москвы показано на рис. 51. Наиболее сильное ухудшение свойств вследствие контактной коррозии вызывали медь и свинец, слабое влияние оказывали алюминий, магниевый сплав АМг и анодированный алюминиевый сплав В95, окисная пленка которого была наполнена хромпиком, а также анодированный алюминий с наполнением водой.  [c.127]

Учитывая заметную разность потенциалов между различными сплавами, применяющимися в авиации, Симпсон [5] подчеркивает, что высокопрочный алюминиевый сплав, являющийся основным конструкционным материалом в авиации, должен быть особенно тщательно изолирован от магниевых сплавов, марганцовистых бронз, нержавеющих и малоуглеродистых сталей. Контакт алюминиевого сплава с нержавеющей сталью в эксплуатации не так уж опасен, как этого можно было ожидать, исходя из разности потенциалов. Это объясняется способностью алюминиевого сплава к сильной анодной поляризации. Однако этот эффект проявляется лишь в средах, не содержащих галоидных ионов. В их же присутствии контактная коррозия не подавляется и алюминиевый сплав подвергается коррозии. В этих условиях следует позаботиться о защите контакта.  [c.138]

Не менее важно для уменьшения контактной коррозии найти правильный метод сборки изделий. На рис. 66 представлены удачные и неудачные методы сочленения обшивки из алюминиевого сплава с кронштейнами из магниевого сплава, описанные в работе [55]. В первом варианте имеется непосредственный контакт алюминиевого сплава с магниевым через скапливающийся электролит. Во втором варианте металлы разъединены с помощью виниловой ленты. Дополнительные дренажные отверстия способствуют высушиванию поверхности.  [c.193]

При соединении деталей из магниевых сплавов с деталями из других материалов необходимо учитывать возможность контактной коррозии, а при соединении с неметаллическими материалами — агрессивность последних.  [c.22]

Кадмирование применяется также для защиты стальных и медных деталей в целях предупреждения контактной коррозии алюминиевых и магниевых сплавов.  [c.181]

После пайки детали из магниевых сплавов, паянные с применением флюсов, охлаждают и промывают в проточной воде, затем обрабатывают в специальном растворе, содержащем хромовую кислоту, с последующим кипячением в течение 2 ч в 5%-ном растворе хромпика. После такой обработки паяные магниевые детали оксидируют и на них наносят лакокрасочные покрытия. После контактно-реакционной пайки сопротивлением с выдавливанием жидкой фазы паяные швы не требуется защищать от коррозии.  [c.212]

При применении клепаных конструкций очень важен правильный выбор материала для заклепок, их постановка, а также надежная защита соединений. В принципе нельзя допускать, чтобы заклепки имели более отрицательный потенциал пЬ сравнению с листовым материалом. В таких случаях наиболее ответственная часть конструкции, обеспечивающая прочность и занимающая малую площадь, оказывается под воздействием большого катода и начинает сильно разрушаться. С другой стороны, нельзя также допустить, чтобы разность потенциалов между заклепкой и листовым материалом была чрезмерно большой. Выбирая для заклепок более благородный материал, следует заботиться о том, чтобы он не слишком усиливал коррозию листового материала. Эту мысль можно проиллюстрировать на примере магниевых сплавов. Из алюминиевых сплавов наименьшую контактную коррозию магниевых сплавов вызывает алюминиевомагниевый сплав АМг5. Поэтому клепку листового материала из магниевых сплавов рекомендуется производить заклепками из сплава АМг5.  [c.191]


В противоположность сильной контактной коррозии, наблюдаемой в растворах солей, атмосфера вызывает ничтожную-коррозию в течение 1 года и больше, а корродирующие участки сосредоточиваются у катода. Рис. 5 показывает, что кадмиро-ванные стальные втулки в пластинах из сплава + 6 / А1 + + 1 /а 2п + 0,2 /о Мп вызывали более сильную коррозию магниевого сплава при 18 часовом погружении его в раствор КаС1, чем за 9 месяцев испытаний в морской атмосфере на расстоянии 24 м от берега моря. Испытание на расстоянии 242 м от берега моря показало значительно меньшую коррозию. В жесткой промышленной атмосфере за 1,5 года испытаний наблюдалось лишь легкое травление.  [c.169]

Магаиевый электрод типа ПМ (табл. 13) представляет собой удлиненный профиль В-образного сечения, в который при отливке вставляется стальной сердечник. Вокруг сердечника в магниевом электроде имеется углубление в виде воронки. После соединения контактов воронка заполняется битумной мастикой с целью предотвращения контактной коррозии. Потенциал протектор-грунт для этих сплавов равен -1.6 В по медно-сульфатному электроду сравнения (при разомкнутой цепи протекторной установки). При анодной плотности тока 10 мА/м к. п. д. протекторов находится в пределах от 0.52-0.66.  [c.82]

Проблема контактной коррозии не потеряла своей актуальности и сегодня, несмотря на то что наши знания в этой области значительно расширились. В этом можно убедиться по многочисленным публикациям и, в частности, появившимся в печати сообщениям о коррозии самолетов, ракет Бомарк, Минетмен и других [3, 4]. Значительная коррозия, появившаяся в самолете, возникла вследствие контакта магниевых сплавов со стальными подшипниками. В другом случае при испытании отдельных узлов ракет была обнаружена сильная коррозия узла, ставящего ракету на боевой взвод. Коррозия появилась в месте контакта латунных лопаток, армированного корпуса и пружин из нержавеющих сталей.  [c.18]

При необходимости контакта магниевых сплавов с алюминиевыми вредное влияние контакта устраняется посредством анодирования алюминиевых сплавов в серной кислоте и покрытия их цинкхроматным грунтом, например АЛГ-1. Магниевые детали при этом оксидируют химическим или электрохимическим способом и покрывают цинкхроматным грунтом. Для уменьшения контактной коррозии можно алюминиевые детали также оцинковать, поскольку контакт магния с цинком является наименее опасным. Встречаются, однако, указания, что названные выше предосторожности надо применять лишь тогда, когда магниевые сплавы контактируют с алюминиевыми сплавами, содержащими медь. Во всех остальных случаях достаточно наружные поверхности покрыть двумя слоями цинкхроматного грунта и слоем эмали, т. е. применить такие же средства защиты, какие приняты для защиты при контакте магниевых сплавов.  [c.139]

Магниевые сплавы обладают наиболее отрицательным потенциалом среди металлов и сплавов, применяемых в конструкциях самолетов. Поэтому выбор допустимых контактов, соотношение площадей контактируемых разнородных металлов, способы их сочленений с учетом возможности их антикоррозионной защиты должны быть тщательно продуманы. Допускаются контакты при эксплуатации в атмосферных условиях с магниевыми сплавами других марок, алюминием и его сплавами, цинком, кадмием, сталью фосфатированной (пропитанной маслом фосфатной пленки или лакокрасочным материалом), сталью хроматированной, медными сплавами лужеными и титаном. Однако и в этих случаях обе контактируемые поверхности следует во избежание непосредственного контакта покрывать слоем лококрасочного покрытия. Контактная коррозия опасна тем, что наиболее сильное разрушение анода, в данном случае магниевого сплава, происходит на границе раздела контактируемых металлов.  [c.49]


Смотреть страницы где упоминается термин Контактная коррозия магниевых сплавов : [c.150]    [c.194]    [c.402]    [c.177]    [c.50]    [c.53]    [c.59]   
Конструкционные материалы Энциклопедия (1965) -- [ c.2 , c.12 ]



ПОИСК



Контактная коррозия

Контактная коррозия магниевых сплавов титановых сплавов

Контактные сплавы

Коррозия и сплавы

Коррозия магниевых сплавов

Магниевые коррозия

Магниевые сплавы контактная

Сплавы магниевые



© 2025 Mash-xxl.info Реклама на сайте