Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вольфрам сварка

Окисляемость металла при сварке определяется химическими свойствами свариваемого материала. Чем химически активнее металл, тем больше его склонность к окислению н тем выше должно быть качество защиты при сварке. К наиболее активным металлам, легко окисляющимся при сварке, относятся титан, цирконий, ниобий, тантал, молибден, вольфрам. При их сварке необходимо защищать от взаимодействия с воздухом не только расплавленный металл, но и прилегающий к сварочной ванне основной металл и остывающий шов с наружной стороны. Наилучшее качество защиты обеспечивают высокий вакуум и инертный газ высокой чистоты.  [c.40]


Пайкой обычно называют процесс соединения материалов с помощью припоя без их расплавления. Процессы сварки и пайки часто бывает трудно разграничить, например при сварке разнородных металлов в сочетаниях сталь и медь, вольфрам и молибден и др., когда расплавляется только один, более легкоплавкий металл. Поэтому в дальнейшем при анализе источников энергии целесообразно объединять сварку и пайку одним термином — сварка. Пайку можно выполнить с использованием тех же энергетических процессов, что и сварку.  [c.15]

Наконец, вакуум как защитная среда при сварке для целого ряда химически активных и тугоплавких металлов и сплавов обеспечивает значительно более высокие показатели свойств сварного шва, чем сварка в инертных газах (Аг и Не). Поэтому целый ряд сварных конструкций- из этих материалов (вольфрам, молибден, тантал, цирконий, титан и др.) изготовляют исключительно при помощи электронно-лучевой сварки.  [c.114]

При точечной сварке па воздухе необходимо точное соблюдение установленной продолжительности сварки. Применяют электроды из сплава вольфрам — медь или из вольфрама.  [c.510]

За последние годы в связи с развитием техники возникли потребности сварки новых, ранее не применявшихся материалов с особыми свойствами. В современной технике (особенно ракетной, авиационной, энергетической, атомной, химической, приборостроительной и др.) стали широко применяться в качестве конструкционных материалов тугоплавкие и в химическом отношении весьма активные металлы — молибден, тантал, вольфрам, ниобий, цирконий, бериллий и др. Это обусловило разработку способов сварки, основанных на новых физических принципах, так как при помош,и суш е-ствовавших методов не представлялось возможным получать доброкачественные соединения. В результате исследований, проведенных во многих странах, в том числе и в СССР, были изысканы новые источники нагрева, обеспечившие создание сварки электронными и когерентными лучами, плазменной дугой, ультразвуком, диффузионной сварки в вакууме, холодной сварки, сварки трением и др. Эти новые способы сварки внедряются в нашей стране.  [c.130]

Структурные напряжения образуются преимущественно при сварке углеродистых и легированных сталей. Эти напряжения имеют практическое значение при сварке сталей, в которых содержание углерода 0,3—0,35u/q и выше, и сталей с меньшим количеством углерода, но содержащих хром, марганец, вольфрам, никель и другие элементы, повышающие их закаливаемость.  [c.857]


Свариваемые металлы. Стыковой сваркой (в том числе и ударной) свариваются между собой почти все металлы и сплавы, а именно а) конструкционные, углеродистые и специальные стали во всех возможных сочетаниях, как, например, углеродистая с быстрорежущей, быстрорежущая с нержавеющей, хромоникелевая с малоуглеродистой б) углеродистые и специальные стали с ковким чугуном, всеми сортами латуней и бронз, монель-металлом, медью, никелем, сплавами высокого электрического сопротивления, немагнитными сплавами, вольфрамом, молибденом, оловом, свинцом, сурьмой и всеми благородными металлами в) алюминий с алюминиевыми сплавами, медью и большинством сортов латуней и бронз г) вольфрам с медью и медными сплавами, а также сплавами высокого электрического сопротивления д) никель с медью, латунями и бронзами.  [c.356]

Кроме обычных углеродистых сталей, которые подвергаются обезуглероживанию, все исследованные жаростойкие материалы довольно хорощо противостояли воздействию чистого натрия или натрий-калиевого сплава. Таким образом, титан, цирконий, ниобий, тантал, молибден, вольфрам, легированные стали, никель и сплавы на никелевой основе можно уверенно использовать в качестве конструкционных материалов в контакте с натрием при температуре около 800° С. Чистые сварочные швы, выполненные на обычном оборудовании для аргоно-дуговой сварки, стойки в этих условиях так же, как и основной металл. Обработка поверхности оборудования в данном случае повышает его коррозионную стойкость незначительно.  [c.319]

Наиболее удовлетворительной свариваемостью обладают 12-процентные хромистые стали с содержанием углерода в пределах 0,10- 0,20%. В зависимости от соотношения легирующих элементов они могут иметь либо однородную сорбитную структуру, либо содержать до 10—15% свободного феррита. Обладая замедленной кинетикой структурных превращений, указанные стали даже при наличии высокого подогрева при сварке имеют в околошовной зоне закаленные мартенситные прослойки, для устранения которых необходим отпуск конструкции. Поэтому обязательным условием их сварки является высокий подогрев при температурах 300—450° с медленным охлаждением и последующим отпуском. Легирование 12-процентных хромистых сталей такими карбидообразующими элементами как вольфрам, ванадий,  [c.31]

Источником энергии сварки при ДКС служит электрическая дуга, поддерживаемая разрядом конденсаторов. Батарея конденсаторов 1 (рис. 3-22) заряжается от источника постоянного напряжения U , и ее напряжение подводится к сварочному электроду 2 (вольфрам, графит) и цоколю 3. Пробой промежутка 2—3 осциллятором 4 обусловливает разряд, дуга расплавляет вывод и сваривает его с цоколем. Сварка должна производиться при положительной полярности на цоколе.  [c.225]

Сварочная техника и технология занимают одно из ведущих мест в современном производстве. Свариваются корпуса гигантских супер танкеров и сетчатка человеческого глаза, миниатюрные детали полупроводниковых приборов и кости человека при хирургических операциях. Многие конструкции современных машин и сооружений, например космические ракеты, подводные лодки, газо- и нефтепроводы, изготовить без помощи сварки невозможно. Развитие техники предъявляет все новые требования к способам производства и, в частности, к технологии сварки. Сегодня сваривают материалы, которые еще относительно недавно считались экзотическими. Это титановые, ниобиевые и бериллиевые сплавы, молибден, вольфрам, композиционные высокопрочные материалы, керамика, а также всевозможные сочетания разнородных материалов. Свариваются детали электроники толщиной в несколько микрон и детали тяжелого оборудования толщиной в несколько метров. Постоянно усложняются условия, в которых выполняются сварочные работы сваривать приходится под водой, при высоких температурах, в глубоком вакууме, при повышенной радиации, в невесомости. Недаром сварка стала вторым после сборки технологическим процессом, впервые в мире опробованным нашими космонавтами в космосе.  [c.3]

При сварке вольфрамовым электродом на переменном токе условия горения дуги в полупериоды разной полярности отличаются. Когда вольфрам является катодом, из-за мощной термоэлектронной эмиссии с него проводимость дугового промежутка возрастает, сила тока увеличивается, напряжение дуги снижается. Наоборот, в полу-период обратной полярности проводимость дуги уменьшается, сила тока уменьшается, напряжение увеличивается. В сварочной цепи появляется постоянная составляющая тока. Она снижает стабильность горения и уменьшает проплавляющую способность дуги, ослабляет интенсивность катодного распыления окисной пленки на поверхности детали. Ухудшается качество шва. Поэтому при сварке алюминия нужно подавлять постоянную составляющую тока. Для этого в сварочную цепь нужно последовательно включать батарею конденсаторов, которая хорошо пропустит переменный ток и не пропустит постоянный. Специализированные установки для сварки алюминия, например УДГ-301, УДГ-501 (см. гл. 4), такую батарею имеют в своей конструкции.  [c.194]


Главная область применения вольфрама — производство сталей (около 85%). Он входит в состав жаропрочных сверхтвердых сталей (инструментальные, быстрорежущие) и сплавов (победит, стеллит и др.). Чистый вольфрам используется в электротехнике (нити ламп накаливания) и радиоэлектронике (катоды и аноды электронных приборов), для спиральных нагревателей в электрических печах, электродов, различных деталей для высоковакуумных и рентгеновских приборов, при атомно-водородной сварке.  [c.201]

В обычных условиях дуговой разряд в вакууме не возбуждается, так как для этого необходимы высокое напряжение и наличие газов или паров металла. Однако в качестве источника нагрева при сварке можно использовать дуговой разряд в вакууме, стабилизированный струей разреженного инертного газа. Катод в таком случае представляет собой полую трубку небольшого Рис. 23.4. Схемы свободно горящей (а), диаметра из тугоплавкого мате-стабилизированной (б) и сжатой (в) дуги риала (вольфрам, тантал). Сквозь  [c.452]

Химически активные тугоплавкие металлы (вольфрам, молибден, цирконий, тантал, ниобий и др.). Особенности сварки тугоплавких активных металлов обусловлены следующим.  [c.513]

Обозначения типов электродов состоят из индекса Э (электроды для дуговой сварки) и следующих за ним цифр и букв. Две первые цифры соответствуют среднему содержанию углерода в наплавленном металле в сотых долях процента. Среднее содержание основных химических элементов указано в процентах после буквенных обозначений химических элементов А — азот Б — ниобий В — вольфрам Г — марганец К — кобальт М — молибден Н — никель Р — бор С — кремний Т — титан Ф — ванадий X — хром.  [c.73]

Вольфрам и молибден отличаются высокой растворимостью в твердом состоянии в железе, хроме и никеле. Отличительной особенностью соответствующих диаграмм состояния является очень малая разность температур затвердевания основного компонента Fe, Ni, Сг) и эвтектики. Вследствие этого интервал кристаллизации доэвтектических сплавов настолько мал, что можно не опасаться появления горячих трещин при сварке хромоникелевых аустенитных сталей. Будучи ферритизаторами, вольфрам и молибден повышают стойкость против горячих трещин сварных швов стали типа 18-8. Положительное действие этих элементов слабее, чем ванадия, титана, алюминия.  [c.207]

Из числа элементов, применяемых для легирования металла шва при сварке аустенитных сталей, ванадий, и бор вызывает резкое падение окалиностойкости. Другие элементы (вольфрам, марганец, молибден), по данным автора, мало влияют на окалиностойкость сварных швов стали типа 25-20.  [c.286]

В сплавах, содержащих достаточное количество Р-стабилизирующих элементов, вплоть до комнатной, температуры превращений не происходит. У этих сплавов изменение структуры в результате теплового воздействия при сварке или термической обработке не наблюдается (так же как и у высоколегированных ферритных или аустенитных сталей). Р-стабилизаторами являются цирконий, молибден, ванадий, ниобий, тантал, хром, железо, кобальт> медь, марганец, никель, кремний, вольфрам, олово и водород.  [c.101]

Вольфрам, не подвергавшийся термическому влиянию сварки. Вытянутая структура вследствие холодной деформации. 200 1, (17) табл. 2,5.  [c.113]

Для получения качественной сварки, особенно тонколистовых копстру1 ций, следует обеспечивать точную подготовку и сборку кромок прихватками вручную вольфра.мовым электродом или в специальных сборочпо-сварочпыл приспособлениях.  [c.52]

В катодных стержнях для аргонно-дуговой сварки применяют торированный или лантанированный вольфрам. При сварке примесные элементы (Th или La) диффундируют изнутри на поверхность электрода, проходя между микрокристаллами вольфрама, так что на поверхности образуются отдельные островки пленки. Затем пленка расползается по поверхности вольфрама, образуя одноатомный слой. Излишек примесей может вызвать деполяри-зационный эффект и увеличение ф.  [c.68]

Вольфрам, нагреваясь от дуги до температур, близких к температурам плавления, становится весьма восприимчивым к действию активных газов. Поэтому в целях экономии электродов и для обеспечения стабилизации процесса обычно при сварке W-элек-тродом используют инертные газы.  [c.99]

Один из первых таких материалов состоял из 90% вольфрама и 10% меди. Он запатентован Адамсом в 1923 г. [1] и предназначен для работы при высоких температурах и высоких напряжениях. В1925 г. Джиллетти запатентовал композиционный материал медь— вольфрам для работы в качестве электродов при сварке сопротивлением. Имеется упоминание [8] о композиционном материале, состоящем из вольфрама и серебра или другого благородного металла, предназначенного для использования в электрических контактах. Вслед за этими разработками появилось множество других, касающихся использования композиционных материалов для электрических контактов, что сыграло значительную роль в развитии электрических приборов. Некоторые из этих тугоплавких композиционных материалов используют в устройствах для электрохимической и электроискровой обработки, все более широко применяющихся в промышленности в последнее время.  [c.416]

В качестве неплавящегося электрода применяют почти исключительно вольфрам из-за его высокой температуры плавления и сильной электронной эмиссии, которая проходит через дугу и ионизирует ее, чем способствует поддержанию стабильного разряда. Известно два композиционных материала, применяемых для таких электродов вольфрам—торий и вольфрам—цирконий. Одним из главных преимуществ таких материалов является их способность к сохранению точечного конца электрода, что дает возможность производить сварку в ограниченной по плон ади области, как, например, узкие стыки в стальных трубопроводах.  [c.439]

Нагрев образца в установках ВМД-1 и ВМС-1 так же, как и в установках типа ИМАШ-5С-65, производится за счет тепла, выделяющегося при пропускании через образец электрического тока. Для измерения и регулирования температуры образца к нему точечной сваркой прикрепляются спаи термопар алюмель-хромелевой (на диапазон 20—1000° С) и вольфрам-рениевой (на диапазон 1000—2000° С). Выводы термопар подключаются к электронному потенциометру.  [c.135]


Среднее содержание молибдена в земной коре оценивается в 3-10 %, что значительно превышает содержание таких металлов, как вольфрам, ниобий и тантал. Молибден образует относительно крупные месторождения молибденита (минерал состава M0S2) и шеелита (минерал состава СаМо04), разработка которых является относительно несложной и хорошо освоена в промышленности. Из концентратов молибденита и шеелита в промышленности производят ферромолибден и молибдат кальция для легирования сталей и цветных металлов [27, 56, 57, 84], металлический молибден и изделия из него для электровакуумной и электронной промышленности [46, 56, 57, 84]. В настоящее время в нашей стране и за рубежом разработан ряд жаропрочных сплавов на основе молибдена, ведутся широкие исследования по усовершенствованию технологии их получения, обработки и сварки [1, 53, 83, 86, 87, 146, 149].  [c.8]

Цирконий, платина и гафний стойки в натрии до температуры 600—700° С, тантал в очищенном от кислорода натрии стоек до температуры 1000° С. Скорость коррозионного процесса бериллия становится значительной, если в натрии содержится 0,01% кислорода. Сурьма, висмут, кадмий, золото, иллий и чугун в натрии нестойки. На уран натрий воздействует только при наличии в последнем кислорода. При этом скорость реакции пропорциональна концентрации кислорода и при температуре 600° С для очищенного от кислорода натрия составляет 30—100 мк1мес. Торий и ванадий стойки в натрии до температуры 590° С. Скорость коррозии этих металлов 0,2 мг/см мес. Ниобий и вольфрам стойки в очищенном от кислорода натрии до температуры 900° С. Для кратковременной работы при температуре 1500° С пригоден молибден. Сварные соединения титана, циркония, ниобия, тантала, молибдена, никеля, выполненные аргонодуговой сваркой, стойки до температуры 800° С.  [c.49]

В странах Западной Европы получили распространение стали с 9—12% Сг, который резко повышает окалиностойкость, и с дополнительным легированием элементами, обеспечивающими повышенную жаропрочность (Мо, W, V). Так, шведская фирма Сандвик выпускает трубы из стали НТ7, содержащей около 9 /о Сг и 1% Мо (для труб промежуточного пароперегревателя), и из стали НТ9, содержащей 12% Сг, а также молибден, вольфрам и ванадий (для труб первичного пароперегревателя). Стали хорошо свариваются контактной сваркой и электродуговой сваркой аустенитными электродами. Следует отметить, что эти стали применяют при температурах стенки до 600° С.  [c.147]

В производстве радиотехнической аппаратуры (тиратронов, фотоэлементов, радиоламп, полупроводниковых приборов и другой аппаратуры) широко применяют контактную и конденсаторную сварку. Ежегодный выпуск этих приборов исчисляется сотнями миллионов штук. К сварке в радиотехническом приборостроении предъявляются особые требования соединяются трудносвариваемые и редкие металлы (тантал, вольфрам, золото, молибден и др.). Диапазон толщин свариваемых изделий от 5 мк до нескольких миллиметров.  [c.112]

Соединение вольфрама с вольфрамом можно осуществлять точечной или стыковой сваркой. Однако металл шва всегда бывает рекристаллизо-ванным и, следовательно, хрупким. Механическое соединеиие, например заклепочрюе, по-видимому, наиболее надежно. Вольфрам легко спаивается с медью, серебром и никелем при условии, если спаиваемые детали являются чистыми и пайка производится в неокисляющей атмосфере. Сварка воль-<1)рама с никелем методом сопротивления впшне удовлетворительна для изготовления деталей электронных ламп.  [c.154]

Примером бестрансформаторной сварки служит ударная конденсаторная сварка (рис. 5.36, а), когда концы обкладок конденсатора подключены непосредственно к свариваемым заготовкам 2 и 3, одна из которых жестко закреплена, а другая может перемещаться в направляющих J. Если освободить защелку 4, удерживающую заготовку 2, то под действием пружины 1 она быстро переместится по направлению неподвижной заготовки 3 и ударится о нее. Перед соударением возникает мощный разряд за счет энергии, накопленной в конденсаторе. Этот разряд оплавляет торцы обеих заготовок, которые после соударения свариваются между собой под действием силы осадки. Бестрансформаторной сваркой можно сваривать встык проволоки и тонкие стержни разной толщины из разнородных металлов (вольфрам -никель, молибден - никель, медь - кон-стантан).  [c.263]

Присадочная проволока для газопламенной сварки сталей применяется согласно ГОСТ 2246 - 70, она такая же, как и при всех видах дуговой сварки. Это 6 марок низкоуглеродистой, 30 марок легированной, 41 марка высоколегированной стальной холоднотянутой проволоки диаметром от 0,3 до 12 мм. Поставляется она в мотках массой не более 80 кг, с обязательной маркировкой. Обозначение стальной проволоки включает в себя буквы Св (сварочная) и буквенно-цифровое обозначение ее состава. Так же, как и при маркировке сталей, в марке проволоки легирующие элементы обозначают Б - ниобий, В - вольфрам, Г - марганец, Д - медь, Н - никель, С - кремний, Ф - ванадий, X - хром, Ц - цирконий, Ю - алюминий. Цифры перед буквами Св обозначают диаметр проволоки, после этих букв - содержание углерода в сотых долях прюцента. После букв, обозначающих легирующие элементы, - процентное содержание этих элементов (отсутствие цифр означает, что данного элемента около  [c.57]

Сварка полым катодом имеет и ряд недостатков. Один из них — постепенный износ канала электрода. По мере сварки нижний край внутренней поверхности канала разрушается и канал на конце трубчатого электрода приобретает коническую форму. Так как катодное пятно стремится иметь минимальные размеры, а напряжение дуги должно сотфаняться минимальным, то пятно постепенно заглубляется внутрь канала электрода, где давление газа больше. Однако перемещение катодного пятна вверх по электроду ограничено электрод охлаждается и приближение пятна к участку интенсивного охлаждения снижает эмиссию электронов, приводит к затвердеванию расплавившегося на стенках канала материала электрода. Одновременно из-за роста длины дуги увеличивается напряжение. В итоге отверстие электрода из тугоплавкого металла начинает уменьшаться и может совсем заплавиться, а дуга гаснет. Поэтому время непрерьшной работы электрода в зависимости от марки металла, из которого он изготовлен (вольфрам, молибден), диаметра отверстия электрода, силы тока 01раничено 1—5 ч.  [c.470]

При применении вольфрамового электрода в качестве защитных используют инертные газы или их смеси и постоянный или переменный ток. Лучшие результаты при сварке большинства металлов дает применение электродов не из чистого вольфрама, а иттрированных или лантаниро-ванных. Добавка в вольфрам при изготовлении электродов 1,5. .. 2 % оксидов иттрия и лантана повышает их стойкость и допускает применение повышенных на 15 % сварочных токов. Перед сваркой рабочий конец электрода обычно затачивают на конус с углом 60° на длине двух-трех диаметров. Форма заточки электрода влияет на форму и размеры шва. С уменьшением угла заточки и диаметра притупления в некоторых пределах глубина проплавления возрастает.  [c.124]

По свариваемости рассматриваемые материалы можно разделить на две группы. Металлы первой группы (цирконий, гафний, ниобий и тантал) при соблюдении технологических условий сварки обладают хорошей свариваемостью. Сварка металлов второй фуппы (молибден, вольфрам) вызывает большие трудности ввиду их высокой чувствительности к примесям, охрупчивающим металл. Подогрев молибдена до температуры 200. .. 315 °С и снятие остаточных напряжений после сварки (при нагреве до 980 °С) снижает вероятность образования холодных трещин.  [c.480]

Сталь 20ХЗМВФ — сложнолегированная. Она содержит хром, молибден, вольфрам и ванадий. Это самая жаропрочная перлитная сталь. Предназначена для работы при 550—560° С в течение 100 000 ч. Рекомендуемый режим термической обработки — закалка с последующим отпуском. Прокаливается насквозь в сечениях до 900 мм. Для сварки стали 20ХЗМВФ разработаны электроды.  [c.193]


Из-за явно выраженной склонности металла шва на никелевой основе к горячим трещинам при сварке невозможно использовать композиции, близкие к оеновному металлу. Удается получить шов на никелевой основе, свободный от трещин за счет легирования его элементами, повышающими силы межатомных связей матрицы [59]. К таким элементам относится молибден, а также вольфрам, действующий несколько слабее. На базе таких составов разработаны электроды марок ИМЕТ-10 [22], ЦТ-28 [47] и АНЖР-1 [17]. За рубежом широко используется легирование шва ниобием [29].  [c.243]

Никель и молибден практически не окисляются при дуговой сварке. Угар вольфрама относительно невелик в условиях сварки под флюсом и электрошлаковой сварки (переход его из проволоки в сварочную ванну составляет обычно 90— 95%). При сварке в СО а или в газовых смесях, а также при сварке открытой дугой угар вольфрама более высокий. Это, например, проявляется в образовании трудно удалимой окисной пленки на поверхности сварною шва в случае сварки в углекислом газе (см. гл. VI). Ванадий окисляется в еще большей степени, чем вольфрам. Если переход вольфрама в шов достигает 90—95%, усвоение ванадия сварочной ванной не превышает 80—85%. При сварке под низкокремнистым флюсом окисление ванадия сопровождается образованием соединений типа шпинелей (Ме О-МегОз), прочно сцепляющихся с поверхностью сварного шва (см. рис.Л24). Подобным образом ведет себя и ниобий, хотя окисляется он менее энергично, чем ванада й.  [c.76]

Кремний, алюминий, ванадий, молибден, вольфрам и другие ферритизаторы, в отличие от фер-ритокарбидообразователей ниобия и титана, а также циркония повышают прочность аустенитных швов типа 18-8 без заметного уш,ерба для их пластичности в натуральном состоянии, т. е. после сварки без термической обработки (табл. 39). Аналогичным образом действует и хром в швах стали типа 18-8.  [c.231]


Смотреть страницы где упоминается термин Вольфрам сварка : [c.47]    [c.357]    [c.371]    [c.297]    [c.51]    [c.80]    [c.3]    [c.159]    [c.344]   
Конструкционные материалы Энциклопедия (1965) -- [ c.3 , c.156 ]



ПОИСК



Вольфрам

Вольфрам — Применение для электродов на сварку

Вольфрам, особенности сварки

Сварка алюминиевых сплавов вольфрама

Сварка вольфрама—Режимы

Сварка вольфрама—Режимы соединения

Сварка меди с вольфрамом и титаном

Сварка меди с тугоплавкими металлами (молибденом, вольфрамом, танталом, ниобиСтеклов)

Сплавы молибдена, вольфрама и хрома 156 Достоинства и недостатки 156, 157 Режимы сварки 157 — 159 - Способы

Технология сварки сплавов на основе молибдена, вольфрама и хрома (И.Н. Шиганов)



© 2025 Mash-xxl.info Реклама на сайте