Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вольфрам - цирконий

За последние годы в связи с развитием техники возникли потребности сварки новых, ранее не применявшихся материалов с особыми свойствами. В современной технике (особенно ракетной, авиационной, энергетической, атомной, химической, приборостроительной и др.) стали широко применяться в качестве конструкционных материалов тугоплавкие и в химическом отношении весьма активные металлы — молибден, тантал, вольфрам, ниобий, цирконий, бериллий и др. Это обусловило разработку способов сварки, основанных на новых физических принципах, так как при помош,и суш е-ствовавших методов не представлялось возможным получать доброкачественные соединения. В результате исследований, проведенных во многих странах, в том числе и в СССР, были изысканы новые источники нагрева, обеспечившие создание сварки электронными и когерентными лучами, плазменной дугой, ультразвуком, диффузионной сварки в вакууме, холодной сварки, сварки трением и др. Эти новые способы сварки внедряются в нашей стране.  [c.130]


Молибден, ниобий, тантал, титан, вольфрам, ванадий, цирконий. .....  [c.294]

Ниобий, молибден, тантал, титан, вольфрам, ванадий, цирконий <800 <800  [c.283]

Химически активные тугоплавкие металлы (вольфрам, молибден, цирконий, тантал, ниобий и др.). Особенности сварки тугоплавких активных металлов обусловлены следующим.  [c.513]

При Производстве отливок из цветных сплавов в качестве шихтовых материалов используют первичные цветные металлы, которые являются основой или легирующими компонентами сплавов, — алюминий, магний, медь, марганец, никель, кремний, цинк, олово, свинец, висмут, титан, кобальт, литий, бериллий, кадмий, сурьма, хром, ниобий, вольфрам, ванадий, цирконий, тантал, редкоземельные металлы (церий, неодим, лантан и др.)  [c.129]

К числу ферритообразующих примесей, помимо хрома, относятся алюминий, титан, кремний, ванадий, ниобий, тантал, вольфрам, молибден, цирконий, а также бериллий, цинк, мышьяк, олово, сурьма, литий, уран. Влияние мышьяка на структуру аустенитной стали рассмотрено в работе [25].  [c.105]

Твердые и сверхтвердые материалы (вольфрам, диоксид циркония, карбид вольфрама) имеют наибольшие значения деформации, и она меньше изменяется в зависимости от плотности прессовки. Сравнительно большое значение деформации древесины сосны объясняется трубчатым строением древесных клеток.  [c.124]

Для изготовления электродов электроду-говых плазмотронов применяют тугоплавкие металлы, такие как вольфрам, молибден, цирконий, гафний или специальные сплавы. Ресурс работы вольфрамового катода при токах до 1000 А составляет несколько сотен часов и определяется в основном природой плазмообразующего газа. Катоды выполняются из циркония или гафния, наиболее устойчивых материалов при работе дуговых плазмотронов в окислительных средах. На поверхности этих материалов образуется оксидная пленка, с одной стороны, хорошо проводящая электрический ток при высоких температурах, а с другой, - предохраняющая металл от дальнейшего быстрого окисления.  [c.443]

К третьей группе принадлежат молибден, вольфрам, титан, цирконий, ниобий, уран, тантал и другие элементы, которые из водных растворов В чисто м виде не выделяются.  [c.6]

Буквы за цифрами означают С — кремнии X — хром Н — никель Ю — алюминий Т — титан Г — марганец М — молибден К — кобальт В — вольфрам Ц — цирконий Р — бор А — азот.  [c.6]

Для измельчения структуры алюминия и его сплавов применяют следующие модификаторы титан, бор, молибден, вольфрам, ниобий, цирконий и др. Структура алюминиевых бронз, по данным М. В. Мальцева, измельчается в - 10 раз под воздействием следующих модификаторов ванадия до 0,2% бора до 0,1% ва-надия+бора по 0,2% вольфрама 0,01%+бора 0,02%. Структура латуней резко измельчается под влиянием следующих модификаторов ванадия до 0,05% ванадия+бора по 0,02% титана+бо-ра по 0,05%. Для оловянных бронз для этих целей применяют ва-надий+бор по 0,05 /о цирконий 0,1%+бор 0,05% титан 0,04% + +бор 0,02% [40].  [c.46]


Разрежение в камерах составляет от 10 до 10 мм рт. ст. Такой вакуум создает возможность электронам пролетать большой путь без соударений с частицами газа, что позволяет разогнать их до высоких скоростей. С другой стороны, при глубоком вакууме содержание воздуха в единице объема в тысячи и десятки тысяч раз меньше, чем содержание вредных примесей в единице того же объема, заполненного аргоном, при нормальном давлении. Это исключает опасность насыщения расплавленного металла газами и создает возможность сварки тугоплавких и высокоактивных металлов. Поэтому электроннолучевая сварка применяется при соединении таких металлов, как молибден, тантал, вольфрам, ниобий, цирконий, ванадий и т. п. Для углеродистых сталей электроннолучевая сварка в вакууме не применяется.  [c.35]

В установках для диффузионной сварки наибольшее распространение получил индукционный нагрев, что обусловлено его простотой, возможностью быстрой смены номенклатуры свариваемых деталей. Контактный нагрев целесообразен при необходимости локального разогрева зоны соединения деталей. Радиационный нагрев рекомендуется при сварке изделий с тонкими элементами и из неметаллических материалов. При диффузионной сварке разнородных деталей широко применяется нагрев за счет теплопередачи. Сокращение сварочного цикла достигается применением тлеющего разряда (за счет совмещения в одной установке операции очистки поверхности в процессе сварки). Потребность в сварке таких тугоплавких материалов, как вольфрам, молибден, цирконий, вызвала необходимость разогрева зоны сварки посредством бомбардировки электронами (электронный луч) и терморадиационного нагрева от кварцевых трубок. Могут применяться также и комбинированные источники нагрева.  [c.98]

В современной технике, особенно в космической технике и в электронике, возрастающее значение приобретают металлы, которые до настоящего времени редко или совсем не покрывались гальваническим способом. К таким металлам относятся бериллий, титан, молибден, вольфрам, тантал, цирконий, ниобий, торий и уран. Для  [c.66]

Распоряжением Правительства РФ от 16 января 1996 г. №50-р утвержден перечень основных видов стратегического минерального сырья, включающий нефть, природный газ, уран, марганец, хром, титан, бокситы, медь, никель, свинец, молибден, вольфрам, олово, цирконий, тантал, ниобий, кобальт, скандий, бериллий, сурьму, литий, германий, рений, редкие земли иттриевой группы, золото, серебро, платиноиды, алмазы, особо чистое кварцевое сырье.  [c.276]

Каждый легирующий элемент обозначается буквой Н — никель X — хром К — кобальт М — молибден Г — марганец Д — медь Р — бор Б — ниобий Ц — цирконий С — кремний П — фосфор Ч — редкоземельные металлы В — вольфрам Т — титан А — азот Ф — ванадий Ю — алюминий.  [c.363]

Улучшаемые стали содержат 0,3—0,4%С и разное количество легирующих элементов (хром, никель, молибден, вольфрам, марганец, кремний) в сумме не более 3—5%, и часто около 0,1% измельчителей зерна (ванадий, титан, ниобий, цирконий).  [c.383]

Следовательно, к тугоплавким должны быть отнесены следующие металлы ванадий (/пл—1900°С), вольфрам (3410°С), гафний (1975°С), молибден (2610°С), ниобии (2415°С), рений (3180°С), тантал (2996°С), технеций (2700°С), титан (1672°С), хром (1875°С), цирконий (1855°С). Все эти элементы расположены в одном месте периодической системы элементов и относятся к металлам переходных групп (см. табл. 2).  [c.521]

Ниобий и тантал обычно легируют в больших количествах молибденом, титаном, вольфрамом и другими преимущественно тугоплавкими металлами. Молибден легируют вольфрамом и в небольших количествах титаном и цирконием, которые являются более сильными карбидообразователями, чем молибден (вольфрам), и образуют вторичную карбидную фазу с малым количеством вводимого углерода (сотые доли процента). Эта фаза при выделении сильно упрочняет сплав.  [c.529]

В обозначении марки первые две цифры указывают среднее содержание углерода в сотых долях процента. Буквы за цифрами обозначают С — кремний, Г — марганец, Н — никель, М — молибден, П — фосфор, X — хром, К — кобальт, Т — титан, Ю — алюминий, Д — медь, В — вольфрам, Ф — ванадий, Р — бор, А — азот, Н — ниобий, Ц — цирконий.  [c.13]

Окисляемость металла при сварке определяется химическими свойствами свариваемого материала. Чем химически активнее металл, тем больше его склонность к окислению н тем выше должно быть качество защиты при сварке. К наиболее активным металлам, легко окисляющимся при сварке, относятся титан, цирконий, ниобий, тантал, молибден, вольфрам. При их сварке необходимо защищать от взаимодействия с воздухом не только расплавленный металл, но и прилегающий к сварочной ванне основной металл и остывающий шов с наружной стороны. Наилучшее качество защиты обеспечивают высокий вакуум и инертный газ высокой чистоты.  [c.40]


Химические элементы в сталях условно обозначаются следующим образом алюминий (А1) — Ю, азот (А) — А (только в высоколегированных сталях), бор (В) — Р, ванадий (V) — Ф, вольфрам ( ) — В, кремний (51) — С, кобальт (Со) — К, марганец (Мп) — Г, медь (Си) — Д, молибден (Мо) — М, никель (N1) — Н, ниобий (N8) — Б, титан (Т1) — Т, хром (Сг) — X, цирконий (2г) — Ц.  [c.48]

Наконец, вакуум как защитная среда при сварке для целого ряда химически активных и тугоплавких металлов и сплавов обеспечивает значительно более высокие показатели свойств сварного шва, чем сварка в инертных газах (Аг и Не). Поэтому целый ряд сварных конструкций- из этих материалов (вольфрам, молибден, тантал, цирконий, титан и др.) изготовляют исключительно при помощи электронно-лучевой сварки.  [c.114]

Вместе с тем очень стойкие карбиды титана, вольфрама, ниобия, циркония практически не удается использовать в полной мере, так как они чаще всего образуются в виде избыточных фаз при кристаллизации и при термической обработке с основным твердым раствором не взаимодействуют. Поэтому такие элементы, как титан, ванадий, цирконий, ниобий, молибден, тантал и вольфрам, следует вводить с элементами, которые образуют с ними сложные карбиды и участвуют в процессах термической обработки.  [c.50]

Необходимо еще отмстить, что железо, марганец и хром образуют карбиды только первой группы тантал, ванадий, цирконий, ниобий и титан - только карбиды второй группы, а вольфрам и молибден могут образовывать карбиды обеих групп.  [c.75]

На рис. 41 приведены данные о влиянии легирующих элементов на временное сопротивление ниобия при кратковременных испытаниях на растяжение при 1095°С. К числу эффективных упрочнителей ниобия (см. рис. 41) относятся хром и алюминий. Ванадий, цирконий, гафний, молибден и вольфрам эффективно упрочняют ниобий при введении в количествах 5 - 20% (по массе), а титан и тантал практически не упрочняют его.  [c.89]

Создание жаропрочных сплавов для работы при температурах 1300 - 1800°С возможно в результате дисперсного упрочнения тугоплавкими тонкодисперсными оксидами. Так, вольфрам упрочняют диоксидом тория молибден - диоксидом циркония цирконий -оксидом иттрия и т.д. Разработаны сплавы системы W - Мо, W - Мо - Re с диоксидом тория, которые обладают высокими значениями прочности, жаропрочности и модуля упругости (см. табл. 26).  [c.415]

Химические элементы в марках стали обозначают следующими буквами марганец Г кремний С хром X никель Н молибден М вольфрам В ванадий Ф титан Т алюминий Ю медь Д ниобий Б кобальт К бор Р фосфор П цирконий Ц селен Е.  [c.223]

Другим фактором, затрудняющим перемещение дислокаций, является легирование твердых тел примесями. Известно, что малые добавки примесных атомбв улучшают качество технических сплавов. Так, добавки ванадия, циркония, церия улучшают структуру и свойства стали, рений устраняет хрупкость вольфрама и молибдена. Это, как говорят, полезные примеси, но есть примеси п вредные, которые иногда даже в незначительных количествах делают, например, металлические изделия совсем непригодными для эксплуатации. Так, очистка меди от висмута, а титана — от водорода привела к тому, что исчезла хрупкость этих металлов. Олово, цинк, тантал, вольфрам, молибден, цирконий, очищенные от примесей до 10 —10" % их общего содержания, которые до очистки были хрупкими, стали вполне пластичными. Их можно ковать на глубоком холоде, раскатывать в тонкую фольгу при комнатной температуре.  [c.135]

По характеру взаимодействия с углеродом все легирующие элементы разделяют на карбидообразующие и не образующие карбидов. К карбидообразующим элементам относятся хром, марганец, молибден, вольфрам, ванадий, цирконий, титан. Они образуют с углеродом устойчивые химические соединения (карбиды). К некарбидообразующим элементам относятся никель, кремний, алюминий, кобальт, медь. Эти элементы находятся в растворенном состоянии в железе. Они оказывают графи-тизирующее воздействие. Отметим, что часть карбидообразующих элементов также находятся в железе в растворенном состоянии.  [c.154]

С особенно высокими температурами приходится сталкиваться при космических полетах. По своей жаропрочности для этих целей наиболее перспективны сплавы на основе молибдена. Но из-за плохого сопротивления окислению они нуждаются в защитных покрытиях и хорошего сцепления с основой. Чао, Прист и Майерс [935] в предварительном порядке исследовали долговечность и пластичность различных покрытий. В качестве исходного материала они выбрали сплав молибдена с 0,5% Ti. Листы из этого сплава защищали покрытиями, наносимыми путем камерной цементации , но детали этого процесса они не сообщают. Процесс нанесения покрытия первого типа предпо-пагает совместное осаждение кремния и легирующего элемента (бор, углерод, кобальт, хром, ниобий, тантал, ванадий, вольфрам или цирконий) за один цикл. Процесс второго типа включает два цикла. За первый цикл наносится хромистое (или хромокремниевое) покрытие, тогда как за второй цикл осуществляется совместное осаждение кремния с каким-нибудь одним металлом (или просто осаждение одного металла). Процесс третьего типа предназначен для нанесения многослойных чередующихся покрытий, причем за отдельные циклы поочередно наносятся слои хрома, кремния и легирующих элементов, связывающиеся друг с другом и с основой посредством диффузионных зон.  [c.401]

С помощью плазменной струи, имеющей высокую температуру, практически можно наносить любые тугоплавкие материалы (вольфрам, диоксид циркония, оксид алюминия), а также карбиды, бориды, нитриды и другие тугоплавкие соединения с высокой скоростью и равномерностью. Покрытия можно наносить на большинство материалов, в том числе на стеклопластики. Применение для плазмообразования и защиты нейтральных газов — аргона, азота и их смесей способствует минимальному выгоранию легирующих элементов и окислению частиц. Поэтому покрытия, полученные плазменной металлизацией, характеризуются более высокими механическими свойствами по сравнению с покрытиями, полученными электрической металлизацией.  [c.97]


Карбидообразующие элементы (ванадий, титан, молибден, вольфрам, тантал, цирконий, ниобий, гафний и др.), у ко торых отношение  [c.375]

Хотя в технике в наше время в гораздо больших масштабах используются сплавы металлов, однако и непосредственное применение чистых металлов неуклонно продолжает возрастать. В последние два-три десятилетия особенно увеличился ассортимент Н01вых технически важных металлов. Не так давно на такие металлы, как кобальт, молибден, ниобий, вольфрам, титан, цирконий, тантал, индий, германий и ряд других, можно было смотреть как на сравнительно редкие, не имеющие широкого практического применения. Сейчас все эти металлы имеют уже большое значение в технике и интерес к их свойстам, в том числе и Koippo-зионным, все время возрастает. Для правильного понимания коррозионных свойств металлических сплавов необходимо знать коррозионные свойства чистых компонентов. Поэтому далее мы дадим общую коррозионную характеристику наиболее важных для техники чистых металлов. Коррозионные свойства сплавов будут рассмотрены позже.  [c.430]

Рассмотрим только те тугоплавкие и химически активные металлы, которые могут быть использованы в качестве конструкционных материалов цирконий, гафний, ниобий, тантал, молибден. TaKvie материалы, как ванадий, вольфрам, хром, используют r качестве конструкционных значительно реже п только и комбиннроваипых сварных соединениях.  [c.368]

Ато-мы данного элемента могут образовать, если исходить только из геометрических соображений, любую кристаллическую решетку. Однако устойчивым, а следовательно, реально существующим типом является решетка, обладающая иаиболее низким запасом свободной энергии. Так, например, в твердочм состоянии литий, натрий, калий, (рубидий, цезий, молибден вольфрам и другие металлы имеют объемноцентрированную ку бическую решетку алюминий, кальций, медь, серебро, золото платина и др. — гранецентрированную, а бериллий, магний цирконий, гафний, осмий и иекоторые другие — гексагональную  [c.55]

В соответствии со сказанным карбиды в сталях будут образовывать слс-ующие элементы титан, ванадий, хром, марганец, цирконий, ниобий, мо-шбден, гафний, тантал, вольфрам.  [c.353]

При дальнейшем медленном охлаждении непрерывные твердые растворы этих двойных систем в определенном интервале концентраций образуют химические соединения FeNi3 РеСо, РеСг и FeV. Марганец, вольфрам, молибден, титан, ниобий, алюминий и цирконий образуют с железом твердые растворы замещения ограниченной растворимости. Причем, если количество введенных элементов превышает их предел растворимости с железом, то легирующие элементы образуют с железом химические соединения. На рис. 22 показана диаграмма состояния Fe - W. Тип диаграммы характерен для систем Fe - А1 (рис. 23), Fe - Si, Fe - Mo, Fe - Ti, Fe - Та и Fe - Be.  [c.45]

В марках нержавеющих высоколегированных сталей по ГОСТ 5632—72 химические элементы обозначаются следующими буквами А — азот, В — вольфрам, Д — медь, М — молибден, Р—бор, Т — титан, Ю — алюминий, X—хром, Б — ннобнй, Г — марганец, Е — селен, Н — никель, С — кремний, Ф — ванадий, К — кобальт, Ц — цирконий. Цифры, стоящие в наименовании марки после букв, указывают, так же как и в наименовании марок конструкционных сталей, процентное содержание легирующего элемента в целых едишщах. Содержание элемента, присутствующего в стали в малых количествах, цифрами не обозначается. Цифра перед буквенным обозначением указывает на среднее или при отсутствии нижнего предела на максимальное содержание углерода в стали в сотых долях процента. Наименование марки литейной стали заканчивается буквой Л.  [c.49]


Смотреть страницы где упоминается термин Вольфрам - цирконий : [c.149]    [c.10]    [c.95]    [c.109]    [c.371]    [c.289]    [c.201]    [c.80]    [c.132]    [c.3]    [c.73]    [c.89]   
Смотреть главы в:

Диаграммы состояния двойных металлических систем Т.3  -> Вольфрам - цирконий



ПОИСК



Бурыкина. Покрытия из карбидов циркония и ниобия на ниобии, тантале, молибдене и вольфраме

Вольфрам

Циркон

Цирконий

Цирконий, гафний, ванадий, ниобий, тантал, хром, молибден, вольфрам, (канд техн. науж И. П. Левтонов)



© 2025 Mash-xxl.info Реклама на сайте