Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Энергия реакции па нуклон

Энергия за вычетом этих слагаемых называется внутренней энергией (U). Она сосредоточена в массе вещества и в электромагнитном излучении, т. е. это сумма энергии излучения, кинетической энергии движения составляющих вещество микрочастиц, потенциальной энергии из взаимодействия и энергии, эквивалентной массе покоя всех этих частиц согласно уравнению Эйнштейна. При термодинамическом анализе ограничиваются каким-либо определенным уровнем энергии и определенными частицами, не затрагивая более глубоко лежащих уровней. Для химических процессов, например, несущественна энергия взаимодействия нуклонов в ядрах атомов химических элементов, поскольку она остается неизменной при химических реакциях. В роли компонентов системы в этом случае могут, как правило, выступать атомы химических элементов. Но при ядерных реакциях компонентами уже должны быть элементарные частицы. Внутренняя энергия таких неизменных в пределах рассматриваемого явления структурных единиц вещества принимается за условный уровень отсчета энергии и входит как константа в термодинамические соотношения.  [c.41]


В обоих рассмотренных примерах ядро, испускающее у-лучи, имеет сравнительно небольшую энергию возбуждения, недостаточную для испускания нуклона. Этот результат может быть распространен и на многие другие процессы, приводящие к образованию ядер с энергией возбуждения, меньшей энергии отделения нуклона. К числу таких процессов относятся многочисленные ядерные реакции, одним из продуктов которых является ядро в возбужденном состоянии. При этом обычно энергия возбуждения ядра-продукта бывает меньше энергии отделения нуклона (или какой-либо другой частицы), и испускание -у-излу-чения является единственно возможным способом снятия возбуждения (если не считать рассматриваемого ниже явления внутренней конверсии).  [c.165]

Рассмотренный пример наглядно иллюстрирует возможность использования реакции срыва для определения характеристик уровней остаточного ядра. Следует еще раз подчеркнуть, что этот метод позволяет получать характеристики энергетических состояний ядра, расположенных ниже энергии связи нуклона.  [c.468]

Этим и ограничивается список ядерных реакций, идущих под действием у-лучей, испускаемых естественными радиоактивными элементами. У всех остальных ядер энергия отделения нуклонов  [c.471]

Если образование антинуклонов происходит не на нуклоне, а в ядре, то учет энергии движения нуклонов ядра (так называемая фермиевская энергия, равная примерно 25 Мэе) приводит к снижению порога (в тех случаях, когда бомбардирующий нуклон и нуклон ядра двигаются навстречу друг другу). Порог реакции (81.1) снижается с 5,6 до 4,3 Гэв, а порог реакции (81.8) — с 3,6 до 2,85 Гэв.  [c.631]

Для вычисления Q обычно пользуются не массами ядер, а дефектами масс. Дефектом массы называют величину ЛМ=Л1—А, где Af — реальная масса частицы (атома) А — так называемое массовое число, суммарное число нуклонов (протонов и нейтронов) в атомном ядре. Если М выражать в атомных единицах массы (а.е.м.) и числу А приписать ту же единицу, то и ДЛ1 получится в а.е.м. Одна а.е.м. равна 1/12 массы нуклида С и составляет 1,6605655-10 кг. Для вычисления энергии реакции ДЛ1 удобнее выражать в кило-электрон-вольтах а.е.м. = 931501,59 кэВ.  [c.1069]

Энергия связи нуклонов в легких ядрах растет с увеличением их массового числа, и энергетический выход реакции синтеза й инт определяется конкретным составом реагирующих частиц и конечных продуктов реакции (см. п. 6.7.5 книги 1). Температура в плазме поддерживается за счет энергии  [c.535]


Если энергия у-кванта во много раз превышает среднюю энергию связи нуклона, то возможно также фоторасщепление с вылетом нескольких частиц. Например, при облучении ядра у-квантами с энергией порядка сотни Мэв идут реакции (у, п), (у, 2/7), (у, п, 2/7) К При этом сечение процесса см .  [c.154]

Освобождение энергии при делении ядер. Так же как и в других ядерных реакциях, энергия, освобождающаяся при делении, эквивалентна разности масс взаимодействующих частиц и конечных продуктов. Так как энергия связи нуклона в уране 7,6 Мэв, а энергия связи одного нуклона в осколках 8,5 Мэв при делении, урана должна выделяться энергия  [c.207]

Зависимость средней энергии связи от массового числа в(А) (рис. 7) показывает, что энергия связи нуклона в наиболее легких ядрах, так же как и в наиболее тяжелых, меньше, чем в ядрах с промежуточными массовыми числами. Другими словами, сумма масс легких ядер, рассматриваемых самостоятельно, больше массы среднего ядра, образованного при их слиянии. Следовательно, соединение нескольких легких ядер в одно более тяжелое ядро должно также приводить к освобождению энергии, причем, как показывает крутизна подъема кривой, в таких реакциях синтеза должно выделиться существенно больше энергии на один нуклон, чем в реакции деления. Бели при делении выделяется энергия порядка 1 Мэв на нуклон, то реакция синтеза, например реакция между дейтоном и тритием  [c.222]

Согласно капельной модели ядро представляет собой электрически заряженную каплю несжимаемой ядерной жидкости, подчиняю-ш уюся законам квантовой механики. С помош ью этой модели смогли объяснить механизм ядерных реакций, реакции деления ядер, функциональные закономерности энергии связи нуклонов в ядре. Энергия связи ядра определяется с помош ью полуэмпирической формулы Вайцзеккера, которая может быть получена из аппроксимации ядра двухкомпонентным раствором протонов и нейтронов.  [c.490]

Я. р. под действием у-квантов и электронов. При малых энергиях у-квантов они могут испытывать только упругое рассеяние. При энергиях, больших, чем энергия отделения нуклонов от ядра, осн. процессом становится поглощение у-кванта и испускание ядром нуклонов (см. Фотоядерные реакции). Эл-ны, взаимодействуя с протонами ядра, также могут испытывать упругое и неупругое рассеяние и выбивать протоны из ядра. Исследование упругого рассеяния эл-нов позволило получить данные о распределении электрич. заряда и магн. момента в ядре.  [c.915]

Выполняется в ядерных реакциях также и закон сохранения числа нуклонов. Это выражается в том, что сумма массовых чисел в правой и левой частях уравнения реакции одинакова (см. реакции Vn.2 и Vn.3). При достаточно больших энергиях возможно  [c.265]

По современным воззрениям, энергия возбуждения составного ядра, распределившаяся вначале между нуклонами ядра, после большого числа перераспределений в дальнейшем может вновь сконцентрироваться, согласно статистическим законам, на одной какой-либо частице, которая может вылететь из составного ядра. Второй этап реакции С - В - - Ь напоминает обычный а-распад,  [c.275]

При достаточно большой энергии нейтронов вероятность (сечение) реакции увеличивается. Однако экспериментально измеренные сечения оказываются больше рассчитанных по теории составного ядра. По современным воззрениям это свидетельствует о том, что реакции (п, р) и (п, а) протекают не только путем образования составного ядра. В сравнительно небольшом числе случаев налетающая частица при столкновении с нуклонами ядра выбивает протон из ядра без образования составного ядра.  [c.283]

Испускание Лучей ядрами, возбужденными значительно выше энергии отделения частицы, бывает связано с запретом по четности и моменту количества движения для вылета нуклонов (или других частиц), который делает процесс испускания Y-лучей относительно более вероятным. Примером такого рода является испускание "у-лучей с энергией 17 Мэе в результате реакции + р->4Ве + у, идущей под действием s-протонов (см. 54, п. 2).  [c.165]


Благодаря действию ядерных сил две частицы (два ядра или ядро и нуклон) при сближении до расстояний порядка см вступают между собой в интенсивное ядерное взаимодействие, приводящее к преобразованию ядра. Этот процесс называется ядерной реакцией. Во время ядерной реакции происходит перераспределение энергии и импульса обеих частиц, которое приводит к образованию нескольких других частиц, вылетающих из места взаимодействия.  [c.257]

При изучении ядерной реакции представляют интерес идентификация каналов реакции, сравнительная вероятность протекания ее по разным каналам при различных энергиях падающих частиц, энергия и угловое распределение образующихся частиц, а также их внутреннее состояние (энергия возбуждения, спин, четность, изотопический спин). Многие сведения о ядерных реакциях могут быть получены в результате применения законов сохранения, которые накладывают определенные ограничения на характер протекания ядерных реакций. Мы рассмотрим законы сохранения электрического заряда, числа нуклонов, энергии, импульса, момента количества движения, четности, изотопического спина.  [c.258]

Кроме закона сохранения полной энергии в ядерных реакциях выполняется еще целый ряд законов сохранения законы сохранения электрического заряда и числа нуклонов (т. е. барионного заряда) , законы сохранения импульса, момента количества движения и четности, а также закон сохранения изотопического спина. Последний закон сохранения является следствием зарядовой независимости (изотопической инвариантности ) ядерных сил все три элементарные, чисто ядерные (т. е. без учета электромагнитного) взаимодействия нуклонов тождественны р — р = п — п = п — р), если нуклоны находятся в одинаковых пространственных и спиновых состояниях.  [c.282]

Большой порог реакций вида (п, 2п) и аналогичных им объясняется, очевидно, тем, что для освобождения из ядра двух нуклонов надо затратить энергию, которая должна быть по крайней мере равна удвоенной энергии связи (отделения) нуклона, в то время как при захвате первичного нейтрона в ядро вносится только одна порция энергии связи.  [c.289]

Очень интересные результаты были получены при сравнении реакций tN (п, а) sB и п, р) аС ". Как было показано в 54, обе реакции идут с образованием одного и того же промежуточного ядра yN , т. е. протекают по боровскому механизму. Вместе с тем детальное исследование этих реакций при энергии нейтронов 2- 4 Мэе показало, что первая реакция имеет в 30 раз больший выход, чем вторая. Этот результат не согласуется с боровской концепцией, по которой из возбужденного промежуточного ядра с наибольшей вероятностью должны испускаться нуклоны. Таким образом, рассматриваемые реакции могут идти не только через стадию образования промежуточного ядра, но и как-то иначе.  [c.455]

Сравнение реакций передачи, происходящих лри разных энергиях, показывает, что с увеличением энергии растет сложность реакций передачи, т. е. возрастают сечения реакций, в которых передаются 3—5 нуклонов (например, при бомбардировке ионами зО образуются ядра tN и еС"). Возможно, это связано с тем, что при высоких энергиях существенную роль начинают играть взаимодействия при больших орбитальных моментах I , которым соответствуют большие центробежные силы, препятствующие объединению обоих ядер в одну систему, но допускающие краевые соударения.  [c.457]

Характер ядерных реакций под действием дейтонов в значительной степени определяется особенностями дейтона. Дейтон — это чрезвычайно слабосвязанное [AW (d) = 2,22 Цэв] ядро, состоящее из протона и нейтрона, которые находятся на довольно большом ( 4-10- з см) расстоянии. Из малой величины полной энергии связи дейтона относительно всех его нуклонов следует большая величина энергии возбуждения промежуточно-  [c.457]

Реакция аннигиляции — это реакция нового типа, сопровождающаяся исчезновением нуклона и антинуклона и образованием новых частиц (я-мезонов или /С-мезонов). Разумеется, как и в процессе аннигиляции позитрона, речь идет не об исчезновении, а о переходе материи и энергии из одной формы в другую.  [c.622]

По значениям энергии различают ядерные реакции при малых, средних и высоких энергиях. Реакции при малых энергиях, примерно в несколько электрон-вольт, происходят в основном с участием нейтронов. Реакции при средних энергиях (до нескольких мегаэлектрон-вольт) вызываются нейтронами, а также заряженными частицами и -у-фотонами. При высоких энергиях (сотни и тысячи мегаэлектрон-вольт) реакции приводят к разложению ядер на составляющие их нуклоны и к рождению элементарных частиц.  [c.263]

Ядерные реакции могут протекать и под действием у-квантов, если их энергия превышает энергию связи нуклона в ядре. Энергия связи на нуклон в ядрах первой половины периодической системы составляет примерно 8 Л1эв. Поэтому для изучения реакций под действием фотонов необходимо, чтобы их энергия превышала 8 Мэе. Энергия связи дейтрона составляет только 2,225 Мэе. Облучая дейтерий у-фотонами, впервые в 1934 г. Д. Чедвик заметил, что у-фотоны с энергией hv 2,23 Мэе переводят ядра дейтерия (дейтроны) в возбужденное состояние, которое является неустойчивым и завершается распадом на нейтрон и протон. Ядерные реакции под действием уфотонов получили название фотоядерных реакций (фоторасщепления ядер или фотоядерного эффекта).  [c.289]

В тех случаях, когда энергия возбуждения ядра-продукта оказывается равной энергии отделения нуклона или больше ее, испускание у-лучей также может быть преобладающим эффектом, если испускание нуклона почему-либо затруднено. В части второй книги будут рассмотрены реакции радиационного захвата медленных нейтронов, в которых возбуждение ядра, полученное за счет энергии связи захваченного нейтрона, снимается испусканием двух-трех Y-KBaHTOB. Процесс испускания у-кван-тов в этом случае оказывается более вероятным, чем обратное отделение нейтрона, так как последнее связано с необходимостью концентрации всей энергии возбуждения на одном нуклоне, который к тому же должен находиться вблизи границы ядра. Это явление маловероятно из-за того, что сразу же после захвата нейтрона вносимая им энергия связи быстро перераспределяется в ядре между всеми его нуклонами.  [c.165]


Почти одновременно с коллективной моделью Бором и Моттельсоном была сформулирована обобщённая модель ядра, в к-рой объединяются черты капельной и оболо-чечной моделей и рассматривается взаимодействие коллективных и одыочастичных степеней свободы. Для описания более высоких возбуждений (выше энергии отделения нуклона), для к-рык характерны большая густота уровней и сложная структура большинства состояний, используется статистическая модель ядра. Она оперирует обычными понятиями статистич. физики темп-рой, плотностью уровней, энтропией, флуктуациями и т. п. Эти характеристики ядер широко используются при описании ядерных реакций.  [c.667]

Другие эффекты, возникающие при поглощении у-лучей. Выбивание нуклонов из ядра за счет поглощения у-квантов (ядерный фотоэффект) и вообще расщепление ядер у-квантами практически не играют роли е поглощении у-нзлучения. Порог ядерного фотоэффекта лежит в области энергий 6- 10 Мэв, что соответствует энергии связи нуклона в ядре. При ядерном фотоэффекте из ядра обычно вылетают нейтроны, т. е. идет реакция (у, п). Эффективное сечение процесса, как правило, возрастает при увеличении Z вещества.  [c.154]

Часто эту отрасль ядерной физики называют физикой высоких энергий, потому что для проведения большинства экспериментов 13 данной области нужны частицы весьма высокой энергии. Это обусловлено двумя причинами во-первых, для изучения пространственной структуры элементарных частиц необходимо использовать пучки частиц с очень малой длиной волны I, сравнимой с изучаемыми расстояниями во-вторых, для генерации новых частиц необходимо превысить порог генерации, определяемый их массами. Так, если при изучении ядерных реакций были достаточны энергии бомбардирующих частиц порядка энергии связи нуклонов в ядрах, т. е. 10 Мэв, то для опытов по рождению пионов потребовались протоны, ускоренные до энергий 300 Мэв, а для экапериментов по рождению протон-антипротонных пар-частицы — с энергией 6 млрд. эв.  [c.233]

В обычном стабильном в-ве при не слипгеом высокой темп-ре С. в. не вызывает никаких процессов и его роль сводится к созданию прочной связи между нуклонами в ядрах (энергия связи составляет в ср. ок. 8 МэВ на нуклон). Однако при столкновениях ядер или нуклонов, обладающих достаточно высокой энергией, С. в. приводит к многочисл. ядерным реакциям. Особенно важную роль в природе играют реакции слияния (термоядерного синтеза), в результате к-рых четыре нуклона объединяются в ядро гелия. Эти реакции (при существ. участии также и слабого вз-ствия) идут на Солнце и явл. осн. источником используемой на Земле энергии. Начиная с энергий сталкивающихся нуклонов порядка неск. сотен МэВ, С- в. приводит к рождению л-мезонов, а при ещё больших энергиях — к рождению странных частиц К-мезонов, гиперонов), < очаро-ванных частиц, красивых частиц и множества мезонных и барионных резонансов. Все эти сильно взаимодействующие ч-цы наз. адронами.  [c.678]

Эти особенности не могут быть объяснены в рамках статистической модели ядерных реакций. Предлагается взаимодействие падающей частицы высокой энергии с ядром рассматривать как квазисвободное взаимодействие с нуклонами ядра. Это означает, что падающая частица не передает всю энергию ядру в целом, как предполагает теория составного ядра, а в ядре  [c.242]

Сл( довательно, энергия ЛМс равна сумме кинетических энергий частиц, возникающих в процессе распада. Это соогношение играет важную роль в ядерной физике, указывая источник энергии при процессах деления ядер. В то же время если М (т f f- m2), то реакция может идти в противоположном направлении, обеспечивая термоядерный синтез. Соотношение (7.32) показывает, какая громадная энергия сосредоточена в атомном ядре. Если исходить из среднего значения дефекта масс, примерно равного 0,006 единицы массы на один нуклон, то окажется, что при объединении этих частиц и ядре выделяется энергия, достигающая около 6 МэВ на один нуклон, что в несколько миллионов раз больше энергии обьпгных химических реакций (1 — 2 эВ на атом водорода).  [c.382]

МэвЫукл) с энергией химической связи, выделяющейся при химических реакциях, которая составляет 2—.5 ав. Таким образом, при образовании атомных ядер из нуклонных частиц выделяется энергии на единицу массы в миллионы раз больше, чем при химических реакциях.  [c.97]

Здесь же заметим, что не следует представлять себе атомное ядро как статическую систему нуклонов, расположенных на дне потенциаль юн ямы. М1югочпсле[шые факты но радиоактивному распаду, но ядерным реакциям и др. показывают, что атомные ядра являются динамическими системами нуклонов и что нуклоны в ядрах могут обладать лишь определенной энергией, т. е. располагаются на определенных энергетических уровнях. Заполнение энергетических уровней нуклонами (фермионалш) происходит в соответствии с принципом Паули. Основному состоянию ядра соответствует такое распределеине нуклонов, при котором заполнены все низшие энергетические уровни. Если же какими-то воздействиями нуклоны ядра переводятся па более высокие незаполненные уровни, то это соответствует возбужденному состоянию ядра.  [c.134]

Из-за сильного взаимодействия энергия возбуждения быстро распределяется между всеми нуклонами ядра, в результате чего каждый из них будет иметь энергию, гораздо меньшую энергии связи, и в течение длительного времени не сможет вылететь ив ядра, пока на одном нуклоне, находящемся вблизи от границы ядра, снова не сконцентрируется энергия, превосходящая энергию связи. Другой возможный способ распада составной системы — испускание Y-KBaHTa, — как известно, также происходит сравнительно медленно. Этим и объясняется большое время жизни составной системы, причем это время настолько велико, что система как бы забывает способ своего образования. Параметры промежуточного ядра (энергия, момент и четность) не зависят от вида реакции, в которой образуется промежуточное ядро (см. 54, п. 3).  [c.316]

В табл. 35 даны результаты исследования некоторых ядер приведены значения пороговой энергии для рассматриваемой реакции, которые, очевидно, совпадают с энергией отделения соответствующего нуклона, значения резонансных энергий fpea и значения полуширин резонансных кривых. Обращает на себя внимание огромная полуширина резонансных кривых, из-за которой явление и получило название гигантский резонанс .  [c.474]

При энергиях взаимодействия 1—2 Гэв /С+-мезонов возникает примерно в 100 раз больше, чем Л --мезонов Л --мезоны возникают только в паре с Л+-мезонами, тогда как Д +-мезоны могут возникать и в паре с гиперонами наконец, /С+-мезоыы при взаимодействии с нуклонами могут только рассеиваться и перезаряжаться, а С -мезоны — еще давать реакцию с образованием гиперонов. Все эти свойства казались настолько необычными, что л-мезоны и гипероны стали называть странными частицам и. Однако вскоре выяснилось, что особенности странных частиц связаны между собой и могут быть поняты из самых общих теоретических построений.  [c.178]



Смотреть страницы где упоминается термин Энергия реакции па нуклон : [c.153]    [c.36]    [c.132]    [c.369]    [c.369]    [c.913]    [c.291]    [c.459]    [c.606]    [c.631]   
Основы ядерной физики (1969) -- [ c.94 , c.95 ]



ПОИСК



Нуклон

Энергия нуклона

Энергия реакции



© 2025 Mash-xxl.info Реклама на сайте