Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дипольные колебания ядра

Природа гигантского резонанса заключается в дипольных колебаниях ядра (смещение всех протонов ядра относительно всех его нейтронов) под действием длинноволнового R)  [c.477]

В рассмотренном механизме дипольных колебаний роль упругой возвращающей силы играет взаимодействие сдвинутых оголенных протонов и нейтронов с оставшейся частью ядра. Как видно из рис. 199, число таких оголенных нуклонов пропорционально поверхности ядра, т. е. й R . Масса колеблющихся частей ядра М R . Отсюда для резонансной частоты имеем  [c.476]


Все сказанное об усилении рассеянного света относилось к стоксовой компоненте. Антистоксово рассеяние есть процесс, обратный стоксовому, и для него имеет место не усиление, а ослабление интенсивности. Причина появления мощного антистоксова излучения иная, и для ее выяснения целесообразно исходить из классических представлений о природе комбинационного рассеяния, изложенных в 162. Согласно последним комбинационное рассеяние возникает в результате модуляции поляризуемости молекул колебаниями их ядер.. Рассмотрим, ради простоты, случай двухатомной молекулы и обозначим через изменение расстояния между ядрами в сравнении с его равновесным значением. Дипольный момент молекулы, индуцированный полем световой волны, записывается в виде  [c.856]

Поляризацию принято подразделять на различные виды в зависимости от способа смещения вызывающих ее частиц — носителей связанных зарядов. Все частицы диэлектрика, способные смещаться под действием внешнего электрического поля, можно отнести к двум видам упруго, или сильно, связанные и слабо связанные [11]. Процессу движения упруго связанных частиц препятствует упругая сила. Такая частица имеет одно положение равновесия, около которого совершает тепловые колебания. Под действием внешнего электрического поля частица смещается на небольшое расстояние. Упругие силы, или точнее квазиупругие, связывают электронную оболочку и ядро в атомах, атомы в молекулах, ионы в кристаллах, дипольные молекулы в некоторых твердых телах. Фи шческая природа таких сил изучается в квантовой механике.  [c.145]

Легко видеть, что электрическая ангармоничность всегда должна возникать, если принять во внимание, что в случае гомеополярной связи (подобной связям СН, НС1,. ..) дипольный момент равен нулю как при удалении атомов на бесконечность, так и при уменьшении расстояния между ядрами до нуля. Поэтому качественная кривая изменения дипольного момента в зависимости от расстояния между атомами должна иметь вид, показанный на фиг. 74. Максимальное значение дипольного момента достигается при расстоянии между атомами, отличном от равновесного расстояния г . Наклон кривой в равновесном положении определяет интенсивность основной частоты. Вследствие того что зависимость дипольного момента от расстояния при больших амплитудах колебания перестает быть линейной, даже если потенциальная энергия является строго квадратичной функцией, высшими членами ряда  [c.261]


Явление комбинационного рассеяния света было объяснено сразу же Мандельштамом и Ландсбергом, когда они открыли это явление. В поле световой волны Е электроны внутри молекулы приходят в колебания, и молекула приобретает индуцированный дипольный момент р = С классической точки зрения тензор поляризуемости молекулы р определяется мгновенными положениями ее атомных ядер. Но сами ядра не находятся в покое, а совершают беспорядочное тепловое движение. По этой причине поляризуемость р не остается постоянной, а меняется во времени. Ее можно представить наложением гармонических колебаний, частоты которых определяются колебаниями атомных ядер, т. е. совпадают с собственными частотами инфракрасных колебаний молекулы. Возникает модуляция колебаний индуцированных дипольных моментов р. Если внешнее электрическое поле Е меняется во времени гармонически с частотой со, то в колебаниях дипольного момента р появятся комбинационные частоты со Такие же частоты появятся  [c.616]

Дельта (б)-электроны 227 Демпстера масс-спектрометр 29—30 Детального равновесия принцип 324 Дефект массы 41 Дипольные колебания ядра 475 Дисперсионная зависимость 321 Дифракционное рассеяние нейтронов 349  [c.715]

Для объяснения гигантского резонанса были рассмотрены (в Советском Союзе А. Б. Мигдалом) колебания ядра под действием электромагнитного поля у-квантов. Вообще говоря, при этом возможны колебания дипольные (все протоны ядра сдвигаются относительно всех нейтронов) и квадрупольные (изменение формы ядра), отно-сительная роль которых различна при разных энергиях возбуждения ядра. Теория показывает, что при рассматриваемых возбуждениях ядра (порядка 10 Мэе) вероятность ди-польных колебаний заметно превосходит вероятность квадрупольных колебаний.  [c.475]

У ядра-капли есть еще одна своеобразная степень свободы, а именно колебания всей массы нейтронов относительно всей массы протонов. При введении этой степени свободы фактически делается допущение о том, что ядро как бы состоит из двух жидкостей — протонной и нейтронной, растворенных друг в друге. При возбуждении этой степени свободы ядро приобретает дипольный электрический момент, т. е. поляризуется. Поляризационные возбуждения связаны с глубоким изменением структуры ядра. Поэтому им соответствуют довольно высокие энергии — примерно 15—20 МэВ в тяжелых ядрах и 20—25 МэБ в легких. Колебания такого типа были использованы А. Б. Мигдалом (1945) для объяснения механизма поглощения v-излучения ядрами. Поляризационные колебания ядра аналогичны оптической ветви колебаний в ионном кристалле.  [c.87]

Процесс дипольных колебаний завершается в осн. вылетом нуклонов. В лёгких ядрах это протоны и нейтроны. С меньшей вероятностью вылетают лсгчайгпие ядра — дейтерия, трития, Не и Не (а-частицы). Заметную долю составляют события, в к-рых наблюдается вылет неск. заряж. частиц, что особенно характерно для изотопов Li, Be и их ближайших соседей. По мере увеличения атомного номера Z ядра интенсивность всех каналов, за исключением нейтронного, ослабевает. В области актинидов наряду с испусканием нейтронов происходит деление ядра (см. Целение ядер).  [c.370]

Можно сказать, что колебания дипольного момента связаны с перемещениями центра зарядов относительно центра инерции ядра. При малых возбуждениях ядра (— 1 MeV), благодаря приблизительному совпадению центра зарядов г с центром инерции, дипольные колебания отсутствуют, или, I по крайней мере, сильно приглушены по сравнению с коле-I баниями квадрупольными, которые требуют для своего воз-I буждения гораздо меньшей энергии, чем дипольные колебания, j Последние возникают с заметной интенсивностью только при I сравнительно больших возбуждениях ядра (— lOMeV) .  [c.255]


Фено.менологическое описание коллективных спектров. Атомные ядра по характеру спектра уровней вблизи основного состояния могут быть грубо разделены иа три группы а) магические и околомагиче-ские ядра б) ядра, в к-рых наблюдается колебат. снектр в) деформированные ядра с вращательным спектром. Возбужденные состояния магич. и около-магич. ядер объясняются взаимодействием нуклонов в незаполненной оболочке. Энергии возбуждений таких ядер велики — норядка расстояния между оболочками. О. м. я. рассматривает вторую и третью группы ядер. В атомных ядрах возможны различные виды коллективных движений, папр. колебания плотности, связанные с объемной сжимаемостью ядерной материи и имеющие энергию возбуждения в тяжелых ядрах 10 Мэе. Энергия возбуждения дипольных колебаний нейтронов относительно протонов достигает 15—20 Мзв. Т. о., частоты этих колебаний лежат довольно высоко. Особую роль в О. м. я. играют иоверх-постные ко.лебания, имеющие относительно малую энергию возбуждения.  [c.457]

Y-Лучи, испускающиеся ядром при переходе в низшее энергетическое состояние, могут уносить различный момент количества движения I. Излучение, уносящее момент количества движения / = 1, называется дипольным, / = 2 — квадрупольным, I = 3 — октупольным и т. д.. Каждое из них характеризуется определенным характером углового распределения. Кванты различной мультипольности возникают в результате различных колебаний ядерной жидкости электрических (дипольные, квадрупольные и т. д.) и магнитных (дипольные, квадруполь-ные и т. д.).  [c.166]

Рис. 1. Монопольная L—d), дипольная (L=l), нвадрупольная (L 2) и октувольная (L = 3) моды колебаний сферического ядра с проекцией углового момента L на ось движения М=0. Дипольная мода— ложная (смещение без изменения формы). Рис. 1. Монопольная L—d), дипольная (L=l), нвадрупольная (L 2) и октувольная (L = 3) <a href="/info/22545">моды колебаний</a> сферического <a href="/info/710590">ядра</a> с проекцией <a href="/info/18916">углового момента</a> L на ось движения М=0. <a href="/info/383327">Дипольная мода</a>— ложная (смещение без изменения формы).
Типы колебаний сферич. ядра с L = 0, 1, 2, 3 и Л/=0 (продольное движение) показаны на рис, 1. Монопольная мода (i = 0) соответствует колебаниям плотности с сохранением сферич. симметрии, Дипольная мода (L = l) отвечает смещению центра масс ядра и не реализуется как колебание формы. В квадрупольной моде (i = 2) форма колеблющегося ядра является сфероидальной, а в октупольной (i=3) — грушевидной (назв. мод связаны е характером гамма-излучения, испускаемого при переходе из возбуждённого состояния, см. также Мультипольпое излучение).  [c.407]

Теория К. р. с.— часть общей теории взаимодействия эл.-магп. излучения с веществом. Классич, теория К. р. с. на отд. молекулах основана на трёх положениях молекулы рассеивают свет вследствие колебаний дипольного момента молекулы, индуцируемого полем падающей световой волны свет видимой и ближней УФ Областей спектра рассеивается в основном электронной оболочкой молекулы (т. к. ядра Л Л образующие сколот системы, смещаются в  [c.420]

Согласно теории таких переходов, разработанной Вейцзекке-ром, у-кванты различной мультипольности возникают в результате разных колебаний внутри ядра. Некоторые из этих процессов связаны с перераспределением электрических зарядов внутри ядра (электрические дипольное, квадрупольное и т. д. излучения), другие — с перераспределением токов или магнитных моментов нуклонов (магнитные дипольное, квадрупольное и т. д. излучения). Между моментами начального состояния ядра /1 и конечного состояния ядра /2 и моментом А/, уносимым у-квантом, должно существовать соотношение  [c.123]

Мандельштам и Ландсберг сразу поняли, в чем дело. Как мы указывали При выводе формулы Зельмейера для показателя преломления, в поле световой вблны с напряженностью электрического поля электрон внутри молекулы (рассматрив ась одноатомная водородоподобная молекула) совершает колебания, и молекула приобретает дипольный момент р — 0 ,В. Поляризуемость молекулы, с классической точки зрения, определяется мгновенным положением ее атомного ядра. Однако и само ядро не находится в покое, совершая хаотическое тепловое двидсение. Последнее означает, что и поляризуемость не остается постоянной, а меняется во времени. Такую изменяющуюся во времени поляризуемость можно представить в виде суперпозиции гармонических колебаний, частоты которых определяются колебаниями атомного ядра. Уже упоминалось, что такие собственные частоты молекулы лежат в инфракрасном диапазоне колебаний. Следовательно, и в этом случае возникает модуляция колебаний индуцированного дипольного момента Когда электрическое поле Е меняется во времени по гармоническому закону с частотой а .  [c.149]

Колебания атомов в кристаллах проявляются в ряде явлений. В частности, при поглощении и испускании инфракрасного света, при неупругом рассеянии света видимых и инфракрасных частот (раман-эф( кт) при неупругом рассеянии нейтронов при исследовании резонансного поглощения гамма-квантов ядрами атомов (эффект Мёссбауэра) и др. В разных явлениях проявляются разные ветви колебаний. Например, поглощение и испускание света связано с рождением и исчезновением фононов, которые соответствуют поперечным колебаниям, изменяющим электрический дипольный момент кристалла раман-эффект связан с фононами, соответствующими поперечным колебаниям атомов, изменяющим поляризуемость кристалла рассеяние нейтронов связано с продольными фононами, которые вызывают локальные изменения плотности кристалла.  [c.49]


В случае ядерного С.-ф. в. связь упругих колебаний твёрдого тела с системой ядерных спинов может осуществляться посредством нескольких типов электрич. и магнитных взаимодействий, сила к-рых периодически модулируется акустич. колебаниями. Такими взаимодействиями являются магнитное диполь-дипольное между соседними спинами электрич. квадру-польное между квадрупольными моментами ядра и градиентом электрич. поля, создаваемым внешними по отношению к ядру зарядами сверхтонкое взаимодействие в ферромагнитных материалах взаимодействие ядерного магнитного момента со слабым радиочастотным магнитным полем, возникающим при распространении поперечной звуковой волны в металле, и др. Ядра со спином /> 4 могут обладать электрич. квадрупольным моментом, к-рый является мерой отклонения распределения заряда в ядре от сферич. формы. Акустич. колебания кристаллич. решётки вызывают периодич. изменения градиента внутрикристаллич. электрич. полей, к-рые, взаимодействуя с квадрупольным моментом ядра, осуществляют ядерное С.-ф. в. (т. н. динамич. ядерное квад-  [c.335]

Если интенсивность падающего света мала, в в-ве происходит спонтанное рассеяние света, обусловленное изменением движения микрочастиц в-ва под влиянием только поля падающей волны (см. Комбинационное рассеяние света, Мандельштама — Бриллюэна рассеяние). Интенсивность рассеянного излучения в 1 см в этом случае составляет лишь 10 —10 от интенсивности падающего света. При очень большой интенсивности падающего света проявляются нелинейные св-ва среды (см. Нелинейная оптика). На её микрочастицы действуют силы не только с частотой (О падающего излучения и с частотой (о рассеянного излучения, но также сила, действующая на разностной частоте А(о, равной частоте собств. колебаний микрочастиц, что приводит к резонансному возбуждению этих колебаний. Напр., рассмотрим вынужденное комбинационное рассеяние с участием внутримол. колебаний атомов. Под влиянием суммарного электрич. поля падающего и рассеянного излучений молекула поляризуется, у неё появляется электрич. дипольный момент, пропорциональный суммарной напряжённости электрич. поля падающей и рассеянной волны. Потенц. энергия ат. ядер при этом изменяется на величину, пропорциональную произведению дипольного момента на квадрат напряжённости суммарного электрич. поля. Вследствие этого внеш. сила, действующая на ядра, содержит компоненту с разностной частотой А со, что вызывает резонансное возбуждение колебаний атомов. Это приводит к увеличению интенсивности рассеянного излучения, что вновь усиливает колебания микрочастиц, и т. д. Таким образом, сам рассеянный свет стимулирует (вынуждает) дальнейший процесс рассеяния. Именно поэтому такое рассеяние наз. вынужденным (стимулированным). Интенсивность В. р. с. может быть порядка интенсивности падающего света. (О В. р. с. Мандельштама — Бриллюэна см. в ст. Мандельштама — Бриллюэна рассеяние.)  [c.96]

Помимо фотояд. реакций, Г. р. обнаружен в реакциях с участием эл-нов, протонов, а-частиц, ионов Не+, Ы +, в радиац. захвате пи-мезонов и др. Наряду с электрич. дипольным Г. р, наблюдались более слабо выраженные электрический, квадрупольный Е2), электрический октупольный ЕЗ), электрический монопольный ЕО) и магнитные [М1 и М2) Г. р. Различают изоскалярный (с изотопическим спином 0) и изо-векторный (с изотопич. спином 1) Г. р., соответствующие синфазным (индекс 0) и противофазным (индекс 1) колебаниям протонов относительно нейтронов в ядре (см. табл.).  [c.116]


Смотреть страницы где упоминается термин Дипольные колебания ядра : [c.475]    [c.370]    [c.370]    [c.116]    [c.831]    [c.200]    [c.495]    [c.181]    [c.559]    [c.116]   
Основы ядерной физики (1969) -- [ c.290 , c.291 ]

Введение в ядерную физику (1965) -- [ c.475 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте