Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Единица измерения давления энергии

ДЕЦИБЕЛ (дБ) — логарифмическая единица измерения отношения энергий или мощностей в акустике, связи, электротехнике и радиотехнике. В Д. измеряется уровень, т. е. величина, пропорциональная десятичному логарифму отношения энергий, мощностей, интенсивностей звука, звуковых давлений, а также разность уровней. Число N Д., соответствующее отношению двух энергий (мощностей, интенсивностей) и выражается ф-лой — 10 lg (И"1/И 2). Разность уровней для двух звуковых давлений рг и Рз выражается ф-лой  [c.114]


Последние два члена уравнения (10.2) измеряют приращение давления в рабочем колесе, причем член ul ui)/2 отражает работу центробежных сил. Энергию, соответствующую этим двум членам, называют статическим напором. Следует отметить, что напор и давление — это различные понятия как по физическому смыслу, так и по единицам измерения. Если пьезометрический столб жидкости имеет высоту //, площадь сечения /, а плотность жидкости равна р, то давление у основания пьезометрического столба, т. е. за насосом, составит  [c.204]

Из рассмотрения рис. 3.15 и 3.16 видно, что вся дуга в среднем (измерения без ограничения диафрагмой) излучает с единицы столба больше энергии, чем центральная часть дуги, вырезаемая диафрагмой, т.е. части дуги, прилегающие к электродам, излучают больше, чем середина дуги. При давлении 1,5 МПа измерения проводились при двух длинах дуги / = 15 мм и / = 5 мм. Результаты этих измерений приведены на рис. 3.17. Если считать, что при длине дуги 15 мм на среднюю часть дуги не оказывают влияния приэлектродные части, то можно провести горизонтальную асимптоту, к которой будет стремиться Е при увеличении длины. Можно продолжить зависимость также  [c.77]

В международной системе единиц измерения — системе СИ (SI) — приняты 6 основных, 2 дополнительных и 85 производных единиц. Важнейшими из основных являются следующие единица длины (линейного размера) — метр (м) единица времени — секунда (с) единица массы — килограмм (кг) единица температуры — кельвин (К). Важнейшие производные единицы единица силы, в частности силы тяжести, — ньютон (И) единица давления — паскаль (Па) единица энергии., работы, теплоты—джоуль (Дж)  [c.4]

До настоящего времени только в странах Европы и Северной Америки для измерения длины применяют 18 различных единиц, для измерения массы— 15, давления— 15, энергии и работы- 18 и т. д.  [c.3]

Наибольшую сложность для внедрения в народнохозяйственную практику вызовут те единицы СИ, которые еще не нашли широкого применения в инженерных расчетах и для измерения которых в настоящее время отсутствуют измерительные приборы, градуированные в соответствующих единицах, например для измерения силы в ньютонах, давления — в ньютонах на квадратный метр, электрической энергии — в джоулях и др. Поэтому особое внимание необходимо будет уделить переходу на единицы системы СИ в области измерения силы (ньютон) и давления (ньютон на квадратный метр), учитывая большое количество машин и приборов для измерения этих величин в единицах килограмм-сила и килограмм-сила на квадратный сантиметр соответственно, а также другим единицам, получившим широкое применение (например, килограмм-сила на квадратный миллиметр и т. д.).  [c.615]


Однако при измерении произведенной излучением ионизации более существенной величиной является отношение поглощенной Энергии не к объему, а к массе поглощающего вещества. Это легко понять, если рассмотреть поглощение в газе. Так как ионизация происходит при взаимодействии частиц или квантов излучения с атомами или молекулами газа, то, очевидно, при вдвое меньшем давлении потребуется вдвое больший объем газа, чтобы получить одинаковую ионизацию. Энергию, поглощенную единицей массы данного вещества, называют поглощенной дозой излучения. Ее размерность  [c.265]

Задача 2-5. По трубопроводам А и В одинакового диаметра ( = 3=100 мм) подается под давлением вода. К трубопроводам присоединен пьезометр для измерения разности давления в трубах (рис. 2-5). Определить скорости движения воды в трубопроводах и расход 5А в трубопроводе Л, если удельные энергии в трубопроводах А и В равны. Показание ртутного пьезометра г=1 см. Расход воды в трубопроводе 5 равен Са = 11,8 л/сек. Коэффициент Кориолиса а принять равным единице.  [c.86]

Метрология — это наука об измерениях, методах достижения нх единства и требуемой точности. Она занимается образованием системы единиц физических величин, разработкой методов и средств измерений, точности измерений, обеспечением однообразия средств измерения и созданием эталонов измерения. В 1960 г. Международной метрологической конвенцией (соглашением), в которой приняла участие наша страна, принята единая Международная система единиц (СИ). В стандарте СТ СЭВ 1052—78 установлены основные единицы СИ (длина — метр, масса — килограмм, время — секунда и т. д.) и производные (сила — ньютон, давление — паскаль, энергия, работа, количество теплоты — джоуль и т. д.). Этими единицами теперь поль-  [c.286]

Внесистемные единицы. До настоящего времени находили широкое применение на практике некоторые единицы, не входившие ни в одну из систем. Эти единицы были введены в разное время из соображений удобства измерений соответствующих фактических величин в различных сферах деятельности человека. Например, для измерения длины применяют ангстрем, световой год, парсек площади — ар, гектар объема — литр массы — карат давления — атмосферу, бар, миллиметр ртутного столба, миллиметр водяного столба количества теплоты калорию электрической энергии — электрон-вольт, киловатт-час акустических величин — децибел, фон, октаву ионизирующих излучений — рентген, рад, кюри.  [c.26]

Для воспроизведения единиц в особых условиях, в которых прямая передача размера единицы от существующих эталонов технически неосуществима с требуемой точностью (высокие и сверхвысокие частоты, энергии, давления, температуры, особые состояния вещества, крайние участки диапазона измерений и т. п.), создаются и утверждаются специальные эталоны.  [c.102]

Оптимальная ракета производит высокую тягу на единицу расхода массы. При постоянной тяге скорость истечения выбрасываемой массы меняется обратно пропорционально скорости расхода массы, или секундному массовому расходу. Эффективная ракета должна экономно расходовать массу и поэтому интенсивно расточать энергию. Эта высокая скорость выделения энергии подразумевает, что выбрасываемое вещество нагревается до высокой температуры. Задача ракетного двигателя состоит в преобразовании хаотической тепловой энергии рабочего газообразного вещества в упорядоченное состояние, в котором скорости многих молекул настолько, насколько это возможно, ориентированы в определенном направлении. В идеальных условиях полное количество движения этих молекул в выбранном направлении будет максимальным, но их температура и давление, измеренные наблюдателем, движущимся вместе с потоком, будут равны нулю.  [c.399]

Любой механизм на тепловозе, являющийся источником энергии, ее преобразователем или потребителем, представляет собой источник колебаний, в том числе звуковых. Чем больше мощность механизма на единицу объема или его поверхности, тем больше вызываемый им шум. С ростом удельной габаритной мощности и быстроходности дизелей вопрос о снижении и мерах борьбы с распространением шумов становится все более актуальным. Шум, как известно, представляет собой сложный звуковой процесс с богатым спектром звуковых волн. Учитывая отчетливо выраженную способность человеческого уха оценивать не абсолютное, а относительное изменение силы звука, за единицу ( объективную ) измерения разности логарифмических уровней силы звука принимают децибел, равный 0,1 бела, а уровень шума дизелей в соответствии с ОСТ 24.060.12—72 оценивается величиной уровня звукового давления, вычисляемого по формуле  [c.217]


При движении жидкости по трубопроводу возникает трение как при соприкосновении ее со стеакой, так и внутри самой жидкости вследствие разной скорости различных ее слоев. Часть энергии потока затрачивается на преодоление трения, вследствие чего возникает теплота, которая поглощается самой жидкостью. Наличие трения вызывает потерю энергии и падение давления по длине трубопровода, которое принято измерять в долях кинетической энергии движущейся жидкости. Обычно в расчетах сопротивлений кинетическую энергию относят к 1 м жидкости. Так как единица измерения энергии 1 м (Дж/м ) та же, что и единица измерения давления (Н/м ), потеря кинетической энергии от трения на 1 м численно равна падению давления жидкости. Долю потери кинетической энергии или, что то же, долю падения давления обозначают греческой буквой и называют коэффициентом гидравлического сопротивления таким образом, падение давления Ар составит  [c.64]

До сих пор широко испол1.зуются в практике инженерных расчетов измерение давления (напоров) в технических атмосферах (ат), метрах водяного и миллиметрах ртутного столба (м вод. ст. и мм рт. ст.), из уерение температуры в градусах Цельсия (°С), динамической 1 язкости в пуазах (П) и кинематической в стоксах (Ст), раСоты и энергии в киловатт-часах (кВт-ч). Соотношения между наиболее употребительными единицами применяемых систем измерения приведены в тексте и приложении.  [c.12]

При определении размерностей тепловых величин обычно не используют связь между 1е.мпературой и энергией движения молекул температура рассматривается как одна из основных единиц системы. Единицей измерения температуры служит градус величина градуса зависит от применяемой температурной шкалы. По наиболее распространенной ки ждуклродной стоградусной шкале градус представляет собой сотую часть температурного интервала, отсчитанного от точки таяяия льда до точки кииения воды, измеренных при нормально1М давлении.  [c.55]

Размерности физических величин. Физика имеет дело с измеримыми свойствами физических величин. Некоторые из этих величин, например длина, масса, время и температура, рассматриваются как основные, так как они не зависят друг от друга. Другие величины, такие, как скорость, ускорение, сила, теплопроводность, давление, энергия, рассматриваются как производные величины, так как в конечном счете они определяются через основные величины. Математическая физика занимается представлением физических величин посредством чисел и связанными с этим вопросами. Значения физических величии имеют характер отношений, получаемых путем сравнения измеренной ноличины с соответствующей стандартной величиной, произвольно выбранной и качестве единицы, так что число, выражающее результат измерения, зависит I выбора единицы.  [c.14]

Измерение интенсивности нейтронов. В настоящее время в продаже нет еще приборов, с помощью которых можно было бы измерять слабые потоки быстрых нейтронов на фоне больших интенсивностей у-излучения, обычно присутствующего при получении нейтронов с помощью ядерных реакций. Однако каждой лаборатории, где имеются интенсивные источники нейтронов, вполне доступно устройство нейтронных детекторов специального лабораторного типа. Такой прибор состоит из двух работающих вместе ионизационных камер с высоким давлением, одна из которых чувствительна к у-лучам и нейтронам, а другая, в основном, только к у-лучам. Для счета быстрых нейтронов может применяться и так называемый длинный счетчик , однако последний регистрирует нейтроны, независимо от их энергии, так что показания такого прибора невозможно перевестп в единицы г, если энергия нейтронов не известна из других источников.  [c.306]

Приборы для измерения температуры газа. Измерять температуру непосредственным сравнением с единицей измерения невозможно, поэтому устройство приборов для измерения температуры основано на физических свойствах тел, связанных определенной зависимостью с температурой. Наиболее широко используются тепловые расширения (жидкостные стеклянные, дилатометрические, биметаллические термометры), давление газов, паров и жидкостей (манометрические термометры), электрическое сопротивление проводников (термометры сопротивления), тер-моэлектродвижуш,ая сила (термопары), энергия излучения (пирометры излучения).  [c.237]

Установлено, что большинству существенных свойств зрения, так же как и большинству существенных свойств других систем восприятия, присуща явно нелинейная связь между количеством физической энергии и психологических ощущений. Однако при зрительном определении расстояния передаточное отношение по существу равно один к одному — частично возможно из-за ассоциативной связи с аддитивными единицами измерения — дюймами и футами. Для тех ощущений человека, которые тем сильнее, чем больше величины стимулов, например, зрительной яркости, акустической интенсивности, тактильного давления и других, ощущение пропорционально мощности (обычно коэффициент пропорциональности меньше единицы), соответствующей физической энергии (Стивенс [101]).  [c.237]

Таким образом, при любом градиенте давления относительная толщина потери энергии на непроницаемой теплоизолированной поверхности при л — оо становится близкой к единице. Этот результат качественно подтверждается измерениями, ириведенными в работе Ниши-ваки, Хирата и Чушида [Л. 187].  [c.256]

Таким образом, при любом градиенте давления относительная толш,ина потери энергии на непроницаемой адиабатической поверхности, расположенной за зоной теплообмена, при х- оо становится близкой к единице. Этот результат подтверждается измерениями профилей температур в области тепловой завесы, проведенными в [3].  [c.122]


Для стабилизации параметров режима помимо информации о пространственном положении горелки необходима информация о текущих значениях параметров и состоянии сварочного оборудования. Для дуговой роботизированной сварки плавящимся электродом в общем случае необходимо измерять следующие величины мгновенное и действующее значения силы сварочного тока и напряжения на дуге скорость сварки энергию, приходящуюся на единицу длины шва скорость подачи и вылет электродной проволоки количество израсходованной и оставшейся проволоки расход, давление и состав защитного газа или смеси газов температуру, расход и давление охлаждающей жидкости износ наконечника забрызгивание сопла. Косвенный контроль двух последних величин может быть осуществлен путем измерения времени сварки, отсчитываемого после очередной замены наконечника и сопла, и сопоставления этого времени с ресурсом работы указанных деталей.  [c.141]

Тот же метод был применен для термометрии поверхности при атмосферном давлении в диапазоне 25-ь120 °С [4.42]. Поверхность пленок серебра облучали импульсами Nd YAG лазера (Л = 1064 нм) длительностью 10 НС и энергией 200 мкДж, при этом в отраженном свете регистрировали излучение с длиной волны 532 нм. Площадь сечения пучка на поверхности металла 1 см , угол падения света с р-поляризацией равен 70°. Погрешность измерения составила 5 °С. Температурная зависимость интенсивности (/) второй гармоники в условных единицах является линейной и аппроксимируется выражением I 1,32 —  [c.107]

При определении размерностей тепловых величин обычно не используют связь между темлературой и энергией движения М олекул температура рассматривается как одна из осно1Вных единиц системы. Единицей и змере-ния температуры служит лрадус величина градуса зависит от применяемой температурной шкалы. По наиболее распространенной международной стоградусной шкале градус предстазляет собой сотую часть температурного интервала, отсчитанного от точки таяния льда до точки кипения воды, измеренных ори нормальном давлении.  [c.55]

В следуюш,их И параграфах, посвященных первому закону термодинамики, его аналитическому выражению и некоторым его при- тожеппям, рассматриваются следующие темы о некоторых свойствах движения системы масс троякое действие, производимое теплотой понятие об энергии тела о количествах, определяющих состояние тела единицы для измерения энергии тела и внешней работы первая основная теорема механической теории теплоты один простой пример вычисления энергии заметка о дифференциальных уравнениях, не могущих интегрироваться в обыкновенном значении этой операции другое аналитическое выражение первой теоремы термодинамики для случая, когда состояние тела оиределяется двумя независимыми переменными и изменение совершается оборотным образом применение формул предыдущего параграфа к газам применепие первой основной теоремы термодинамики к газам отно-ш ение теплоемкости газа при постоянном давлении к теплоемкости при постоянном объеме перечисление свойств совершенного газа, выведенных из гипотезы о его строении .  [c.43]

Французский ученый Ланжевен рассмотрел более важный в практическом отношении случай звукового давления на препятствие, находяш,ееся в открытом пространстве (случай радиометра). Из его рассмотрения следовало, что давление на препятствие, полностью поглощаюш,ее звук, точно равно энергии, приходящейся на единицу объема в падающем пучке звуковых лучей (так же как и в случае светового давления). Кажущееся несоответствие выводов Рэлея и Ланжевена было разъяснено французским физиком Бриллюэном, который указал, что рэлеевское давление состоит из двух отдельных частей. Первая часть соответствует ланжевеновскому давлению — это давление испытывает препятствие, иа которое падают звуковые волны — эта часть, таким образом, имеет направленный (векторный) характер. Другая часть — это возникающее гидростатическое давление во всех направлениях именно только это давление и испытывают боковые стенки трубы и оно представляет собой менее существенную часть давления звука. В открытом пространстве изменение давления компенсируется изменением объема, и мы имеем дело только с так называемым ланжевеновским давлением на стенку. Это направленное давление имеет, таким образом, одну и ту же величину в открытой и закрытой системе, чем объясняется правильность результатов измерений с радиометром.  [c.79]

Поток газа в системе измерения СИ задается в м Па/с или в ваттах (Вт). Однозначность этих единиц вытекает из простейщих преобразований поскольку Па = Н/м , то м Па/с = Дж/с = Вт. Физический смысл того, что поток измеряется в единицах мощности, состоит в том, что произведение давления на объем есть энергия, запасенная в газе, а изменение энергии во времени -мощность.  [c.548]

Для измерения некоторых величии применялись внесистемные еднннцы. Например, для давления килограмм-сила квадратный сантиметр (кгс-см ), для теплоты (энергии) — калория (кал) н др. Стандарт СЭВ также допускает использование отдельных внесистемных единиц. Например, для времени — минута (мин), час (ч), сутки (сут), для объема — литр (л), для температуры— градус Цельсия ( С). Можно использовать и десятичные кратные и дольные единицы. Причем эти единицы можно употреблять наряду с единицами СИ, выражая теплоту в килоджоулях (кДж-), энергию— в киловатт-часах (кВт-ч), плотность — в граммах иа литр (г-л )..  [c.17]

Независимо от Майера закон сохранения энергии был также установлен английским физиком Джеймсом Прескоттом Джоулем, проводившим в начале 40-х годов XIX в. свои классические опыты по вьщелению тепла в проводниках при прохождении по ним электрического тока. В 1843 г. эти опьггы привели его к определению механического эквивалента тепла. Таким образом, усилиями Майера и Джоуля было сделано открытие, принесшее первое экспериментальное доказательство кинетического характера тепла-этой некогда загадочной и таинственной субстанции. Правда, в первых своих опытах, которые не могли отличаться большой точностью, Джоуль получил значение механического эквивалента тепла, равное 460 кгм/ккал более поздние опыты дали весьма точное значение 425 кгм/ккал. В конце концов, в результате последовавших затем многочисленных измерений оказалось, что одной единице тепла- килокалории, определяемой, как количество тепла, необходимое для нагревания одного килограмма деаэрированной воды при нормальном атмосферном давлении от 14,5°С до 15,5°С, соответствует 4186,8 джоулей (418,7 кгм) механической работы.  [c.181]

Таблица 27. Перевод значений количества теплоты из калорий (международных) в джоули 162 Т аблица 28. Перевод значений энергии из киловатт-часов в джоули 167 Таблица 29. Уравнения электромагнетизма и некоторые уравнепия атомной физики в рационализованной форме для СИ и нерационализованной форме для системы СГС (симметричной) 172 Таблица 30. Переводные множители для электрических и магнитных величин 175 Таблица 31. Примеры применения единиц СИ для выражения электрических и магнитных величин 177 Таблица 32. Абсолютная и относительная видности при различных длинах волн 181 Табл и ц а 33. Радиологические величины и единицы, рекомендуемые Международной комиссией по радиологическим единицам и измерениям 183 Таблица 34. Предельно допустимые удельные активности и концентрации радиоактивных изотопов в соответствии с санитарными правилами 186 Таблица 35. Фундаментальные физические константы 187 Таблица 36. Соотношение между единицами длины 190 Таблица 37. Соотношение между единицами площади 190 Таблица 38. Соотношение между единицами объема 191 Таблица 39. Соотношение между единицами массы 191 Таблица 40. Соотношение между единицами плотности 192 Таблица 41. Соотношение между единицами удельного объема 192 Таблица 42. Соотношение между единицами времени 193 Таблица 43. Соотношение между единицами скорости 193 Таблица 44. Соотношение между единицами ускорения 193 Таблица 45. Соотношение между единицами угла 93 Таблица 46. Соотношение между единицами угловой скорости 94 Таблица 47. Соотношение между единицами силы 94 Таблица 48. Соотношение между единицами давления и напряжения 195 Т а б л и ц а 49. Соотношение между единицами энергии 195 Таблица 50. Соотношение между единицами мощности 196 Таблица 27. Перевод значений <a href="/info/12564">количества теплоты</a> из калорий (международных) в джоули 162 Т аблица 28. Перевод значений энергии из киловатт-часов в джоули 167 Таблица 29. Уравнения электромагнетизма и некоторые уравнепия <a href="/info/526650">атомной физики</a> в рационализованной форме для СИ и нерационализованной форме для системы СГС (симметричной) 172 Таблица 30. <a href="/info/324144">Переводные множители</a> для электрических и <a href="/info/440993">магнитных величин</a> 175 Таблица 31. Примеры применения единиц СИ для выражения электрических и <a href="/info/440993">магнитных величин</a> 177 Таблица 32. Абсолютная и <a href="/info/194436">относительная видности</a> при различных <a href="/info/12500">длинах волн</a> 181 Табл и ц а 33. Радиологические величины и единицы, рекомендуемые Международной комиссией по радиологическим единицам и измерениям 183 Таблица 34. <a href="/info/43069">Предельно допустимые</a> <a href="/info/356705">удельные активности</a> и концентрации <a href="/info/35709">радиоактивных изотопов</a> в соответствии с санитарными правилами 186 Таблица 35. <a href="/info/668377">Фундаментальные физические константы</a> 187 Таблица 36. <a href="/info/347894">Соотношение между единицами длины</a> 190 Таблица 37. Соотношение между <a href="/info/675801">единицами площади</a> 190 Таблица 38. Соотношение между единицами объема 191 Таблица 39. <a href="/info/83940">Соотношение между единицами массы</a> 191 Таблица 40. Соотношение между единицами плотности 192 Таблица 41. Соотношение между единицами удельного объема 192 Таблица 42. Соотношение между единицами времени 193 Таблица 43. Соотношение между <a href="/info/367217">единицами скорости</a> 193 Таблица 44. Соотношение между <a href="/info/367220">единицами ускорения</a> 193 Таблица 45. Соотношение между единицами угла 93 Таблица 46. <a href="/info/694014">Соотношение между единицами угловой</a> скорости 94 Таблица 47. Соотношение между <a href="/info/40256">единицами силы</a> 94 Таблица 48. <a href="/info/347895">Соотношение между единицами давления</a> и напряжения 195 Т а б л и ц а 49. Соотношение между <a href="/info/88286">единицами энергии</a> 195 Таблица 50. Соотношение между единицами мощности 196


Смотреть страницы где упоминается термин Единица измерения давления энергии : [c.54]    [c.36]    [c.5]    [c.11]    [c.94]    [c.13]    [c.68]    [c.304]    [c.569]    [c.14]    [c.533]   
Справочник строителя тепловых сетей (1967) -- [ c.12 ]



ПОИСК



224 — Единицы измерени

Давление 2 — 9 5 — 147 — Измерени

Давление 9 — Измерение

Давление — Единицы измерени

Давление — Единицы измерения

Единица давления

Единицы измерения

Измерение давления (см. «Единицы для измерения давления

Измерение энергии

Энергия давления

Энергия единица измерения

Энергия — Единицы

Энергия — Единицы измерени



© 2025 Mash-xxl.info Реклама на сайте