Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Родий Электросопротивление

Важным фактором, управляющим сложными закономерностями изменения электросопротивления аморфных сплавов, описанными в предыдущем разделе, является сорт компонентов сплава, причем в каждом температурном интервале этот фактор проявляется по-разному. До сих пор для объяснения этого привлекалась теория электросопротивления жидких металлов, в основе которой лежит учет взаимодействия электронов проводимости. В эту теорию внесены поправки, учитывающие, в зависимости от типа аморфного сплава и температурной области, наличие в аморфных сплавах различного рода дефектов. В этом разделе мы покажем, как с помощью теории Займана [56], позволяющей с успехом объяснить поведение сопротивления жидких металлов, можно также объяснить и некоторые особенности поведения электрического сопротивления аморфных сплавов, которые показаны на рис. 6.26, в  [c.202]


Из анализа зависимости электросопротивления от температуры ясно, что мартенситное превращение // /// при нагреве и охлаждении является классическим фазовым переходом первого рода, характеризующимся температурным гистерезисом. Превращение / // является почти обратимым и близко к фазовому переходу второго рода. С помощью рентгеновского дифракционного исследования при разных температурах обнаружено, что при понижении температуры пик (110) 2 расщепляется на два пика, причем пики фазы / и фазы II никогда не наблюдаются одновременно. Это показывает, что описываемое превращение отличается от обычного мартенситного превращения.  [c.61]

Основные физико-механические свойства некоторых электроизоляционных пластмасс приведены в табл. 5. Из приведенных данных видно, что удельное объемное и поверхностное электросопротивление этих материалов достигает весьма высоких пределов. Пластмассы с высокими электроизоляционными свойствами нашли широкое применение в электротехнической, радиотехнической и других отраслях промышленности. При ремонте и модернизации машин из них изготовляют различного рода электроизоляционные детали, панели и корпуса электроприборов и другие части машин.  [c.25]

Электросопротивление. Присадка родия повышает удельное электросопротивление иридия. Удельное электросопротивление холоднодеформированной проволоки диаметром 0,5 мм из иридия и сплава иридия с 50% КЬ при 20° в наклепанном состоянии составляет  [c.601]

Значительная твердость родиевых покрытий сочетается с высокими внутренними напряжениями, составляющими 0,8—2,0 ГПа. Коэффициент отражения родия несколько меньше, чем серебра (76—81 % в интервале длин световых волн 500—800 км). Однако в отличие от серебра родий длительно сохраняет неизменным коэффициент отражения, что определило применение родиевых покрытий для защиты поверхности серебряных зеркал и отражателей от потускнения. Удельное электросопротивление родня 0,043 Ом-мм.  [c.289]

Значительный интерес представляет оценка макронапряжений или напряжений I рода по величине стрелы прогиба пластины (кольца) при непрерывном химическом или электролитическом стравливании поверхности. По-видимому, как и в общем металловедении, методы определения электросопротивления, дилатометрических характеристик и высокочастотного облучения могут найти эффективное применение для изучения структуры поверхностного слоя в целом.  [c.60]

В современном металловедении физические методы исследования находят все большее применение. Эта тенденция связана с тем, что происходящие в металлах и сплавах различного рода внутри-структурные процессы, которые определяют механические свойства, часто определяются изменением расположения атомов на расстояниях в десятки ангстрем или изменением электронной структуры сплава. Такие процессы наиболее ясное свое выражение находят в большинстве случаев в изменении электросопротивления, т. э. д. с., эффекта Холла, магнитных и других физических свойств.  [c.391]


При отжиге холоднодеформированного металла при невысоких температурах (для металлов обычной чистоты около 0,3 Гпл) никаких видимых изменений в металлографической структуре не происходит, однако увеличенная подвижность атомов вызывает некоторое перераспределение дислокаций и атомов примесей, уничтожение дислокаций и значительное уменьшение числа вакансий, появившихся при пластическом деформировании. Этот процесс называют возвратом первого рода, или отдыхом металла. После отдыха электросопротивление металла, заметно возрастающее при холодной деформации, полностью восстанавливается до номинального значения.  [c.92]

Платина и сплав платинородий (10% родия) незаменим в термопарах, с помощью которых контролируется температура до 1600° С. Сплавы платины с золотом, напыленные тонким слоем на керамическую подложку или стекло, являются стабильными и безотказными электросопротивлениями. Большое количество платины идет на изготовление химической посуды.  [c.97]

Такого рода эксперименты проводились на сплаве алюминия, легированном N1, Мо и 2г в количествах более 0,5%. Растворимость N1 в алюминии при 640° С равна 0,05%, молибдена 0,2% и циркония 0,28%. При 20° С во всех случаях растворимость этих элементов не превышает 0,01%. Напыление проводилось в контролируемой инертной атмосфере. Микроструктура покрытий, напыленных из этого сплава, практически не отличается от структуры чистых алюминиевых покрытий. Хорошо наблюдаемая на литых сплавах вторая фаза отсутствует. Только после отжига покрытий при 600° С вторая фаза выявляется в виде сетки равномерно распределенных тонкодисперсных включений. Наиболее четко пересыщение структуры и легирование влияют на электросопротивление сплава. Измерялось электросопротивление чистого алюминия и сплава до и после изохронного отжига в диапазоне температур 200—600° С с интервалом 50° в течение 1 ч, а также закаленного исходного металла. Закалка проводилась для максимального перевода примесей в твердый раствор (рис. 12) .  [c.25]

Фиг. 18. Диаграмма состояния и свойства сплаеоы системы платина—родий — твердость по Бри -нелю р,5 —удельное электросопротивление ири 25 С а — температурный коэффициент электросопротивления Е — термоэлектродвижушая. сила сплавов в паре с платиной. Фиг. 18. <a href="/info/1489">Диаграмма состояния</a> и свойства сплаеоы системы <a href="/info/534907">платина—родий</a> — твердость по Бри -нелю р,5 —<a href="/info/166961">удельное электросопротивление</a> ири 25 С а — <a href="/info/116828">температурный коэффициент электросопротивления</a> Е — термоэлектродвижушая. сила сплавов в паре с платиной.
Величина удельного электросопротивления пироуглеродных волокон 5—10 Ом м/мм . Прочность пироуглеродных волокон существенно зависит от их диаметра (рис. 1.13д). Базовая длина образца в этих испытаниях составляла 3 мм. Из рис. ЛЪа видно, что наибольшей прочностью обладают волокна диаметром менее 10 мкм. С увеличением диаметра до 30 мкм прочность волокон резко снижается, составляя 60—80 кг/мм . Наряду с зависимостью прочности пироуглеродных волокон от диаметра была обнаружена зависимость прочности от другого геометрического фактора — длины волокна. Эта зависимость представлена на рис. 1.136 (диаметр волокон при этом составлял 8—10 мкм). Из анализа зависимости следует, что при десятикратном увеличении базовой длины прочность волокна уменьшается всего на 40%. Помимо масштабного фактора пироуглерод-ным волокнам присущ и значительный разброс прочности по длине волокна, что объясняется присутствием в образцах различного рода структурных дефектов [221.  [c.25]

Для металлов, которые принято рассматривать как проводники, удельное электрическое сопротивление изменяется в чрезвычайно широких пределах от 1,59 для серебра и 95,8 для ртути до 185 мкпм-см для марганца. Давно известно, что действительно хороших проводников очень мало. Это серебро, медь, золото и алюминий с удельным электросопротивлением, равным соответственно 1,59 1.С92 2,44 н 2,66 мком-см за ними следуют бериллий, натрий, магний, кальций и родий.  [c.39]

Важную информацию о механизме фазового перехода дают различные аномалии вблизи точки плавления. Выше уже обращалось внимание на предшествующий плавлению аномальный рост теплоемкости, электросопротивления, скорости самодиффузии атомов и коэффициента объемного расширения у некоторых металлов. К этому следует добавить обнаруженные при изучении скачков термоэлектродвижущей силы в процессе фазового превращения явления пред-плавления и предзатвердевания у Sn, Bi, In, Ga в области температур на несколько десятков градусов ниже и выше точки плавления соответственно [636]. Уббелоде [636] объяснил эти явления развитием различного рода дефектов в кристалле, в том числе и образованием атомных группировок.  [c.215]


Изучение поведения очищенного зонной плавкой алюминия интересно вдвойне во-первых, потому что становится возможным определение свойств сверхчистого материала и, во-вторых, на основе этого материала можно приготовить сплавы, содержащие малые количества примесей, и исследовать специфическое влияние каждой из них на рекристаллизацию. Для экспериментов такого рода обычные методы должны быть видоизменены, поскольку наблюдения необходимо вести при температурах ниже температур начала рекристаллизации (т. е. при температурах ниже комнатной). Развитие рекристаллизации в результате отжига наблюдают, в частности, с помощью рентгенографирования при температуре жидкого азота. Аннигиляцию дефектов решетки можно изучать путем измерения низкотемпературного электросопротивления см. разд. 3.4). Сами измерения нужно производить прй достаточно низкой температуре образца, чтобы в нем не происхо-  [c.453]

Следовательно, можно сделать вывод, что для твердых растворов ЫЬ — О и КЬ — К, в которых растворенные атомы присутствуют в количествах ниже номинального предела растворимости, магнитные данные и данные по изменению электросопротивления свидетельствуют о наличии как смешанного состояния сверхпроводника с отрицательной поверхностной энергией [6, 7], так и некоторого рода остаточной субструктуры [40]. Точная природа этой субструктуры неизвестна, но, по-видимому, она может включать внедренные атомы, имеющиеся около дислокаций и дефектов, спинодальные структуры, а также сегрега-  [c.119]

Поведение ниобия при намагничении ( R298< k/ io°k 500) и аналогичных образцов, содержащих кислород и азот, в значительной мере обратимо и приближается к предсказанному Абрикосовым для сверхпроводников второго рода. Поле сначала пронизывает образец макроскопически при значении Я/р, величина которого меньше, чем термодинамическое критическое поле Не- По мере увеличения концентрации внедренных атомов Hfp уменьшается, тогда как H f — величина поля, требующегося для перевода сверхпроводника в нормальное состояние,— увеличивается. Отношение Hn/Hq является линейной функцией рп — удельного электросопротивления в нормальном состоянии.  [c.122]

Высокая твердость мартенсита объясняется созданием микро-и субмикроскопической неоднородности строения с равно.мерным ее распределением по объему, т. е. большим числом нарушений кристаллического строения. Микронеоднородность образуется в результате того, что в зерне аустенита возникает громадное количество мелких кристаллитов мартенсита, разделенных поверхностью раздела. Каждый кристаллит мартенсита состоит из блоков, размер которых значительно меньше, чем в исходном аустените. Дробление блоков происходит вследствие больших микронапряжений, возникающих в результате объемных изменений при у - а-превращении (фазовый наклеп). Границы блоков мартенсита, имеющие линейные размеры порядка 200—300 кХ, образуют сумикро-скопическую неоднородность. Толщина мартенситных пластин составляет 0,001—0,1 мм. На таком отрезке может уместиться от 30 до 5000 блоков кристалла мартенсита. Поверхности раздела мартенсита и особенно границы блоков представляют собой трудно преодолимые препятствия для движения дислокаций. Внутри блоков движение дислокаций тормозят 1шходящиеся в кристаллической решетке мартенсита атомы углерода, создавшие статические искажения решетки (напряжение третьего рода). Все это и определяет высокую твердость стали, имеющей мартенснтную структуру. Хрупкость мартенсита вероятно связана с образованием атмосфер из атомов углерода. Присутствие углерода и других примесей в твердом растворе повышает электросопротивление и коэрцитивную силу мартенсита и понижает остаточную индукцию и магнитную проницаемость.  [c.190]

Своеобразно изменяется при пластической деформации стали с пластинчатым цементитом удельное электросопротивление, которое должно увеличиваться с ростом плотности дефектов кристаллической решетки. Однако при деформации прокаткой в сталях с высоким содержанием углерода не наблюдается изменения электросопротивления [335], а при волочении нормализованной или патентированной стали электросопротивление до больших обжатий лишь снижается [338, 339] (см. также рис. 65). Такое уменьшение электросопротивления обусловлено прежде всего усилением ориентации цементитных пластин вдоль направления волочения. После больших обжатий (выше 75%) в сталях с повышенным содержанием углерода наблюдается рост электросопротивления, который обусловлен, по-видимо-му, возникновением субмикротрещин. В некоторых случаях наблюдается снижение электросопротивления и в низкоуглеродистых сталях при небольших деформациях [338]. Так как изменение удельного электросопротивления сильно реагирует на концентрацию атомов примесей в нормальных позициях внедрения, то такого рода снижение иногда вызывается уменьшением содержания атомов внедрения в твердом растворе.  [c.140]

При выборе покрытий для электрических контактов, в особенности слаботочных, большое значение имеет их переходное электрическое сопротивление. Из рис, 12,2 видно, что его значение и тенденция изменения с нагрузкой зависят как от материала покрытия, так и от условий его получения [128, с, 388]. Наиболее низким электросопротивлением характеризуется серебро, высоким — рутений. Палладиевое покрытие из аминохлоридного электролита имеет преимущество перед покрытием, полученным в фосфатном растворе. Отжиг при 300—350 °С несколько улучшает пластичность палладия, но при этом уменьшается его микротвердость. Исследование стойкости против механического износа родия, рутения, палладия показало преимущество последнего, причем образцы, полученные из аминохлоридного электролита, вели себя лучше, чем из фосфатного. Наложение при испытании переменного тока приводит к увеличению износа, но для палладиевых покрытий, полученных в амииохлоридном электролите, износ остается относительно меньшим.  [c.188]

Никелевые и медноникелевые сплавы по механическим, физикохимическим свойствам и областям применения можно условно разделить на следующие основные группы конструкционные, термоэлектродные, сплавы сопротивления и сплавы с особыми свойствами. К первой группе относятся монель-металл, мельхиор, никель технический, никель марганцевый и другие сплавы. Их применяют для изготовления деталей с повышенными механическими и коррозионными свойствами. Ко второй группе относятся хромель, алюмель, копель и сплавы для компенсационных проводов. Эти сплавы отличаются большой электродвижущей силой и высоким удельным электросопротивлением при малом температурном коэффициенте электросопротивления. Применяются они для из1Готовления прецизионных приборов, термопар и компенсационных проводов. Наконец, к третьей группе относятся главным образом нихромы, отличающиеся высокой жаропрочностью и жароупорностью и применяющиеся для изготовления разного рода электронагревательных приборов и электропечей. К этой группе сплавов нами условно отнесены сплавы типа манганин, константан, применяющиеся для реостатов и сопротивлений, а также жаропрочные и магнитные сплавы с особыми свойствами.  [c.282]


Кроме того из них готовят изделия широкого потребления. Биметаллич. проволока (меди 33—50%) применяется в качестве проводов для высокочастотных (до 40 ООО Нг) воздушных линий связи. 4. Мягкая сталь, покрытая медно-цинковыми сплавами (5—10%), напр, томпаком (до 90 1% Си) и латунью (67—70% Си), в виде листов и лент находит применение в электротехнике, автотракторной пром-сти, в физической, лабораторной и медицинской аппаратуре, оптико-механической и музыкальной пром-сти, в производстве различного рода мелких предметов галантереи, скобяных изделий, посуды, для военно-амуниционного снаряжения, охотничьих принадлежностей и спортинвентаря. Проволока из этого Б. употребляется для механич. обуви. 5. Мягкая сталь, покрытая алюминием (10—20 %), известна под названием ферран . В СССР и Зап. Европе из феррана изготовляются изделия широкого потребления. В целях предохранения от коррозии стали в последнее время начал применяться В. мягкая сталь — нержавеющая сталь. Листы из этого Б., получаемые путем прокатки, могут иметь широкое применение в деталях машин и аппаратов, применяемых в консервной, плодоовощной, рыбной, мясной и др. отраслях пром-сти. В целях предохранения от коррозии дуралюмина и других легких сплавов алюминия чрезвычайно широкое применение получили Б. 1) альклед (дуралюмин, плакированный чистым алюминием), 2) дур-альплат [дуралюмин, плакированный легким сплавом алюминия с магнием (0,2—1%) и небольшим количеством Мп], 3) аллауталь (сплав алюминия с 4% Си, 2% 81 и обычной для алюминия примесью Ре, плакированный чистым алюминием) и др. Из Б., изготовляемых из цветных металлов, можно отметить купал — медь, покрытую алюминием. Проволока из этого Б. при помощи анодной оксидации получает поверхностный слой, обладающий высоким электросопротивлением (устраняется в отдельных случаях изоляция). Очень часто проволоку из купала не подвергают анодной оксидации и изготовляют из нее провода и шнуры с резиновой изоляцией, при этом избегается предварительное покрытие медной проволоки чистым оловом или сплавом олова со свинцом, что значительно упрощает производство и устраняет лудильные цехи.  [c.377]


Смотреть страницы где упоминается термин Родий Электросопротивление : [c.407]    [c.505]    [c.55]    [c.268]    [c.442]    [c.502]    [c.303]    [c.585]    [c.65]    [c.157]    [c.293]    [c.76]    [c.552]    [c.39]    [c.502]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.433 , c.434 ]



ПОИСК



I рода

I рода II рода

Родан

Родиан

Родий

Родит

Электросопротивление



© 2025 Mash-xxl.info Реклама на сайте