Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Токарная Элементы резания

Припуски 35 — Режимы резания 11, 58, 59 — Элементы резания 11. 12 Отрезные резцы токарные 71  [c.792]

Элементы резания 11, 12 Токарная обработка на автоматах 69—96  [c.803]

ЭЛЕМЕНТЫ РЕЗАНИЯ ПРИ ТОКАРНОЙ ОБРАБОТКЕ  [c.29]

Элементами резания при токарной обработке являются скорость резання о, подача 5 и глубина резання t.  [c.477]

Рис. 252. Элементы резания при токарной обработке Рис. 252. <a href="/info/72957">Элементы резания</a> при токарной обработке

Элементы резания при токарной обработке  [c.30]

ЭЛЕМЕНТЫ РЕЗАНИЯ ПРИ ОБРАБОТКЕ НА ТОКАРНЫХ СТАНКАХ  [c.22]

Понятие об элементах резания и их расчет при токарных работах приведены на стр. 474 справочника.  [c.614]

Элементы резания 474 Токарные работы на автоматах — Точность экономическая 465, 466  [c.1137]

Рассмотренные элементы резания — глубина резания, подача и скорость резания — определяют режим обработки. Настройка токарного станка сводится к установлению величины этих элементов. При этом режим резания должен быть оптимальным, т. е. обеспечивать наименьшую трудоемкость и себестоимость изготовления детали.  [c.326]

В предлагаемой книге автор попытался в доступной для широкого круга читателей форме изложить существующие представления о процессе превращения срезаемого слоя в стружку и изнашивании контактных поверхностей инструмента. На базе этого приведены сведения об оптимальной форме режущей части инструментов и их эксплуатации. Автор не задавался целью рассмотреть работу всех существующих типов инструментов, а ограничился только теми, конструктивные формы и геометрические параметры которых присущи большинству применяемых в настоящее время инструментов и наиболее характерно влияют на их стойкость и силовые показатели процесса резания. Недостатком некоторых трудов, посвященных резанию металлов, является нечеткость и противоречивость терминологии,и определений многих важнейших характеристик процесса резания и элементов геометрической формы режущей части инструментов. Автор попытался исправить существующее положение. Для лучшего восприятия определения движений и элементов резания, геометрических параметров. инструмента даны на примере работы простейших инструментов — токарных и строгальных резцов. Однако приведенные определения справедливы для любых видов работ и любых инструментов независимо от того, насколько сложно рабочее движение инструмента и каковы конструктивные формы его режущей части.  [c.10]

Элементы токарного резца. Резец состоит из рабочей части — головки и стержня, служащего для закрепления резца в резцедержателе станка (фиг. 1, б). Головка резца имеет следующие рабочие поверхности переднюю, по которой сходит образующаяся в процессе резания стружка, и задние — главную и вспомогательную поверхности, обращенные к обрабатываемой заготовке. Режущие  [c.1]


За расчетное число оборотов шпинделя принимают такое число оборотов, при котором нагрузка на элементы привода максимальная. Расчетное число оборотов можно определять, исходя из режимов резания, по заданной величине наибольшего крутящего момента или силы резания, на основе анализа условий эксплуатации станков. В коробках скоростей универсальных, в частности, токарных, револьверных и консольно-фрезерных станков за расчетное число оборотов обычно принимают минимальное число оборотов, начиная с которого работа идет с использованием полной мощности (нижнюю часть диапазона чисел оборотов в основном используют для операций, не требующих большой мощности — развертывания, зачистки резьбы и т. п.). Для универсальных станков (револьверных, карусельных, консольно-фрезерных, расточных и токарных, за исключением широкоуниверсальных токарных станков среднего размера) в качестве расчетного числа оборотов шпинделя можно принять число оборотов, соответствующее верхней ступени нижней трети диапазона для широкоуниверсальных токарных станков средних размеров — число оборотов, соответствующее нижней ступени второй трети диапазона для универсальных сверлильных станков средних размеров — число оборотов, соответствующее верхней ступени нижней четверти диапазона [5].  [c.563]

Рассмотрим особенности организации интеллектуального управления на токарном станке [1001. Информационное обеспечение системы управления обеспечивается датчиками силы резания и тока в якорной обмотке привода шпинделя, а также акселерометра для измерения вибраций и телекамеры для оценки износа инструмента. Аппаратная часть системы интеллектуального управления включает систему АПУ и связанную с ней микроЭВМ для программной реализации необходимых элементов интеллекта.  [c.131]

Токарный прямой проходной резец (рис. 6.5) имеет режущую часть / и присоединительную часть II, которая служит для закрепления резца в резцедержателе. Режущая часть образуется при специальной заточке резца и имеет следующие элементы переднюю поверхность лезвия I, по которой сходит стружка заднюю поверхность лезвия 2, обращенную к поверхности резания заготовки вспомогательную заднюю поверхность 3, обращенную к обработанной поверхности заготовки режущую кромку 3, вспомогательную режущую кромку б, вершину лезвия 4. Инструмент затачивают по передней и задним поверхностям. Для определения  [c.300]

В машиностроении большинство деталей получает окончательные формы и габаритные размеры в результате механической обработки заготовки резанием, которое осуществляется путем последовательного удаления режущим инструментом с поверхности заготовки тонких слоев материала в виде стружки. Схема работы резца, его элементы и геометрия, а также режимы резания при точении и других видах токарной обработки приведены в гл. 2.  [c.141]

Элементы режима резания при токарной обработке рассчитываются по следующим формулам скорость резания (м/мин)  [c.204]

Принципы и порядок назначения элементов режима резания при строгании те же, что и при токарной обработке. 1. Определяют глубину резания в зависимости от припуска на об а- Сотку (см. стр. 158). 2. Выбирают подачу, максимально допустимую по технологическим требованиям.  [c.220]

Принципы и порядок назначения элементов режима резання ри строганин те же, что и при токарной обработке.  [c.183]

Спиральное сверло, кроме всех режущих элементов, имеющихся у токарного проходного резца, имеет еще поперечную режущую кромку (перемычку), играющую большую роль в процессе резания <см. фиг. II).  [c.13]

При закреплении в корпусе фрезы вместо вставных ножей от 1 до 12 резцов токарного типа, оснащённых твёрдыми сплавами и имеющими надлежащую геометрию режущих элементов, головки могут быть использованы для скоростного резания сталей всех марок. Корпус фрезы изготовляется из стали мар ш 45 или 40Х. Закрепление встав-  [c.126]


Приложением статической силы, однако, не воспроизводится в точности действительные условия работы испытуемого узла. В процессе резания возникают вибрации, приводящие к относительно большим перемещениям нагружаемого элемента. Исследования А. П. Дальской [16] показали, что упругие отжатия узлов токарных автоматов при использовании вибратора оказались больше на 20—25%, чем в случае статического нагружения. А. П. Соколовский [641 указывает, что при легком постукивании по узлам их отжатия увеличиваются. Данный эффект может быть объяснен тем, что при наличии вибраций трение в узлах уменьшается и их податливость возрастает. Из изложенного следует, что жесткость, измеренную приложением статической силы, следует уменьшать, умножая ее на поправочный коэффициент, меньший единицы величину его можно брать в пределах 0,8—0,9.  [c.29]

Вихревые головки (рис. 34) применяют на специально приспособленных токарных станках для нарезания одно- и многозаходных винтов и червяков в условиях крупносерийного и массового производства. Диаметр нарезаемой резьбы 20 — 200 мм, в редких случаях до 1000 мм. Шаг нарезаемой резьбы 4 мм и более. Головка эксцентрично расположена относительно нарезаемой заготовки и оснащена резцами с пластинками из твердого сплава (от 1 до 12). Скорость резания при нарезании 100 — 450 м/мин, классы точности нарезаемых резьбовых элементов — грубый и средний.  [c.228]

Размеры корпуса связаны с размером и формой рабочей части, видом резца. Так, для токарных резцов стремятся, чтобы вершина рабочей части резца располагалась на уровне верхней границы крепежной части у строгальных резцов стремятся к тому, чтобы вершина рабочей части располагалась на уровне опорной плоскости резца. Наиболее опасным участком корпуса резца с точки зрения его прочности является участок сопряжения корпуса и рабочей части. Этот участок находится в непосредственной близости от зоны резания и обычно ослаблен пазами под напайные пластинки, гнездами под неперетачиваемые пластинки, заниженными размерами (например, у отрезных резцов), необходимыми для осуществления обработки, скосами, обеспечивающими облегчение заточки режущих и калибрующих элементов, и т. д.  [c.133]

В процессе резания на металлорежущем станке заготовка и зежущий инструмент перемещаются относительно друг друга. Ла различных станках движения режущего инструмента и заготовки различны. Например, при работе на сверлильном станке сверло вращается и одновременно перемещается вдоль своей оси, заготовка же неподвижна. При точении заготовка вращается, а резец перемещается вдоль оси заготовки. При других процессах резания эти движения могут быть более многочисленны и более сложны. Но во всех случаях одни движения являются рабочими, без них невозможно резание, остальные движения — вспомогательными. Рабочие движения делятся на главное движение и движение подачи. Главное движение — это такое движение, скорость которого является наибольшей. Так например, при токарной обработке вращение заготовки есть главное движение, а перемещение резца есть движение подачи. Одним из важнейших элементов резания является скорость резания.  [c.320]

Токарный прямой проходной резец (рис, 6.5) имеег головку — рабочую часть / и тело — стержень II, который служи для закрепления резиа в резцедержателе. Головка резца образуется при заточке и имеет следующие элементы переднюю поверхнослъ 1, по когорой сходит стружка главную заднюю поверхность 2, обращенную к поверхности резания заготовки вспомогательную заднюю поверхность, 5, обращенную к обработанной поверхности заготовки главную режущун кромку 3 и вспомогательную 6 вершину 4. Инструмент затачивают по передней и задним поверхностям. Для определения углов, под которыми расположены поверхности рабочей части инструмента относительно друг друга, вводят координатные плоскости (рис. 6.6). Основная плоскость (ОП) — плоскость, парал-  [c.258]

Наиболее исследован износ токарного инструмента. Примем следующие обозначения элементов головки резца (фиг. 13), по которым обычно определяют этот износ передняя поверхность /, на которую сходит стружка, главная задняя поверх-цость 6, которая обращена к поверхности резания, и главная  [c.92]

Стойкость. Благодаря частым и относительно продолжительным перерывам между сравнительно кратковременными рабочими циклами отдельных режущих зубьев и обильному применению смазывающе-охлаждающей жидкости процесс трения и износа режущих элементов у метчиков, плашек и резьбовых фрез протекает в условиях низкой температуры. Эти специфические условия резьбона-резания отражаются на увеличении показателя относительной стойкости т, колеблющегося для метчиков и резьбовых фрез в пределах от 0,6 до 1,0 и для плашек около 0,5. Для резьбовых резцов, эксплоатационные условия и температурный режим которых близки к таковым для чистовых токарных резцов, абсолютные величины показателя относительной стойкости тоже сходны и лежат в пределах от 0,08 до 0,13.  [c.119]

Здесь I — размер поверхности детали в мм, по которой осуществляется перемещение инструмента или самой детали в направлении подачи (для различных видов обработки этот размер определяется по-разному — см. табл. 65) /1 — величина врезания в мм, зависящая от геометрических параметров заборной— режущей части инструмента, отдельных элементов режима резания и размеров обрабатываемых поверхностей (для работы различными инструментами определяется по соответствующим формулам — см. табл. 65) для обеспечения свободного подхода инструмента к обрабатываемой поверхности с рабочей подачей расчётную величину врезания следует увеличивать на 0,5-н 2 мм — перебег инструмента или детали в направлении подачи в ММ, во всех случаях, когда инструмент или обрабатываемая деталь относительно инструмента и.меет возможность свободного перемещения за плоскость обработки, прибавляется небольшая величина перебега в пределах 1-Т-5 мм в зависимости от размеров обработки величина перебега к расчётной длине не прибавляется, если рпбота ведётся в упор, например, подрезка уступа, прореза-ние канавок, глухое сверление и т. п. — дополнительная длина в мм. на взятие пробных стружек, имеющая место в условиях единичного, мелкосерийного и серийного производств при работе на универсальных станках (токарных, строгальных, фрезерных и др.) со взятием пробных стружек. В зависимости от измерительного инструмента и измеряемого размера дополнительные длины на взяти пробных стружек колеблются от 3 до 10 мм. При взятии двух пробных стружек дополнительная длина удваивается.  [c.482]


Поясним особенности интеллектуальных станков на примерах [24, 100]. Рассмотрим токарный обрабатывающий центр для ГАП. Интеллектуализация управления центром требует полной автоматизации таких функций, как программирование и настройка станка на обработку конкретной детали, оптимальная загрузка-разгрузка деталей и смена инструмента, контроль за процессом обработки для предотвращения аварий (вызываемых, например, поломкой инструмента), уборка стружки и охлаждение в зоне резания, диагностика возможных неисправностей станка или его системы управления, измерение обрабатываемых поверхностей и их распознавание. Некоторые из этих функций легко автоматизируются в рамках обычных систем АПУ, другие требуют разработки соответствующих элементов интеллекта. Последнее относится, например, к самопрограммированию и самодиагностике системы АПУ, обнаружению поломки инструмента и идентификации геометрических особенностей обрабатываемой поверхности. Что касается автоматизации функций программирования и диагностики, то соответствующие программно-аппаратные средства для их реализации были описаны в п. 4.2 и 4.3. Поэтому здесь остановимся только на автоматизации обнаружения поломок инструмента и идентификации свойств обрабатываемой поверхности.  [c.128]

Общий вид токарного станка с ЧПУ и его основные элементы приведены на рис. 31.10. Жесткость и фиксатдоо неподвижных элементов станка (передней бабки 2 и направляющих 6 для перемещения задней бабки и суппорта) обеспечивает станина 1. В неподвижной передней бабке размещаются привод главного движения детали с закрепленным на шпинделе приспособлением 5, обеспечивающим ее движение со скоростью резания приводы продольной подачи суппорта 7 и привод поперечной подачи инструмента 8 с револьверной головкой 9, перемещающейся по салазкам 10 суппорта. Передача движений суппорту и револьверной головке с резцом осуществляется от соответствующих приводов с помощью зубчатых и винтовых передач. Револьверная головка снабжена приводом с червячной передачей, обеспечивающей при вращении автоматическую смену инструмента. В задней бабке 12 размешена пиноль с центром 11. Пиноль задней бабки имеет гидравлический привод и служит для поджима торца длинномерных деталей в процессе обработки. Управляющая аппаратура и ЧПУ размещены в шкафу 4, управляемом с пульта 3.  [c.584]

На рис. 10 представлена структурная схема самоприспосаблива-щейся системы, предназначенной для автоматизащ1и гидрофицирован-ных токарных, отрезных и других станков с небольшим перемещением рабочих органов. Система стабилизирует усилие резания в процессе обработки. Исполнительный элемент — гидравлический регулятор J изменения рабочей подачи в зависимости от перепада давления на поршне 2 гидроцилиндра 3. Настройка на необходимые усилия резания осуществляется пружиной 4,  [c.491]


Смотреть страницы где упоминается термин Токарная Элементы резания : [c.32]    [c.38]    [c.107]    [c.670]    [c.572]    [c.150]    [c.27]    [c.73]   
Справочник металлиста Том 3 Изд.2 (1966) -- [ c.11 , c.12 ]



ПОИСК



463 — Элементы резани

Резание Элементы

Элементы резания при обработке на токарных станках

Элементы резания при токарной обработке

Элементы резания при токарной обработке (В. А. Аршинов)

Элементы токарных



© 2025 Mash-xxl.info Реклама на сайте