Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Исследование аэродинамических параметров летательных аппаратов

В данной главе рассматривается исследование аэродинамических параметров летательных аппаратов в целом, а также типичных органов управления их полетом. При этом для выявления эффектов взаимного влияния корпуса, крыла и оперения летательного аппарата на его аэродинамические характеристики приходится проводить как весовые, так и дренажные испытания моделей аппаратов в аэродинамических трубах, сопоставлять картины распределения давления по изолированным (отдельно взятым) элементам планера летательного аппарата и по этим же элементам, собранным в единую модель, подсчитывать коэффициенты интерференции, позволяющие по аэродинамическим параметрам отдельных элементов находить суммарные характеристики для их комбинаций. С вопросами интерференции тесно связано и исследование эффективности хвостового оперения летательного аппарата, обусловленного, в частности, скосом и торможением потока за расположенным перед оперением крылом.  [c.283]


По результатам экспериментальных исследований рассчитываются аэродинамические параметры летательных аппаратов. Но для получения истинных величин этих параметров должны быть учтены все особенности, характеризующие условия обтекания модели в рабочей части, которые могут отличаться от условий в свободном полете. Это различие связано с неодинаковыми значениями начальной турбулентности, наличием продольного градиента давлений, изменением скорости из-за ограниченного размера поперечного сечения рабочей части, неблагоприятным влиянием устройств, при помощи которых модель закрепляется в трубе, и др.  [c.21]

Эксплуатация аэродинамических труб непосредственно связана с необходимостью измерения параметров газового потока в рабочей части. Данные этих измерений используются для улучшения конструкции отдельных элементов аэродинамической трубы (форкамера, сопло, диффузор и др.) с целью получения расчетных (заданных) параметров потока. Одновременно такие измерения составляют неотъемлемую часть исследований обтекания моделей летательных аппаратов, связанных с изучением параметров набегающего (невозмущенного) потока.  [c.129]

Управляемость как степень восприимчивости объекта управления к воздействию рулей и устойчивость, характеризующая как бы невосприимчивость к подобному воздействию, являются в известном смысле противоречивыми понятиями. Действительно, чем более устойчив летательный аппарат, снабженный мощным хвостовым оперением, тем труднее осуществить его поворот при помощи руля. Правильный выбор соответствующей аэродинамической схемы, конкретной конструкции летательного аппарата, его органов управления и стабилизации с точки зрения обеспечения наивыгоднейшей управляемости и устойчивости составляет важнейшую задачу современной аэродинамики, в частности аэродинамической теории управления и стабилизации. При этом обеспечение управляемости и устойчивости связано с исследованием динамических свойств такого аппарата, описываемых указанной системой уравнений возмущенного движения. Их коэффициенты определяются компоновочной схемой, которой соответствуют определенные аэродинамические и геометрические характеристики, а также параметры движения по основной траектории. В результате решения этих уравнений выбирают наиболее рациональную динамическую схему летательного аппарата и соответствующую ей конструктивную компоновку, которая бы удовлетворяла баллистическим, технологическим и эксплуатационным требованиям, а также заданной управляемости и устойчивости.  [c.6]


При исследовании движения летательных аппаратов, характеризующегося небольшим изменением безразмерных параметров в (1.1.3 ), аэродинамические коэфициенты представляются в виде ряда Тейлора, в котором могут быть сохранены члены второго порядка малости. Полагая число Ре , фиксированным, напишем, в частности, такой ряд для коэффициента нормальной силы  [c.15]

В самом деле, если известно, например, что производная гпг отрицательна и что, следовательно, центр давления расположен за центром масс, то можно сделать вывод лишь о продольной статической устойчивости. Но нельзя сказать, например, какова будет амплитуда колебаний угла атаки при том или ином значении параметра начального возмущения и каким образом по времени будет происходить ее изменение. На все эти и другие вопросы отвечает теория динамической устойчивости летательного аппарата или устойчивости его движения. Эта теория позволяет, естественно, исследовать не только колебания летательного аппарата, но и общий случай движения аппарата на траектории и устойчивость этого движения. Теория динамической устойчивости использует результаты аэродинамических исследований, полученных на режимах неустановившегося обтекания, при котором на тело будут действовать в отличие от статических условий дополнительные аэродинамические нагрузки, зависящие от времени.  [c.37]

Исследование свойства управляемости, т. е. определение способности летательного аппарата реагировать на отклонение рулей соответствующими изменениями параметров движения (углов атаки, тангажа, рыскания, наклона траектории), является основным при изучении возмущенного движения. Для этих целей служат линеаризованные уравнения, описывающие возмущенное движение летательного аппарата, испытывающего воздействие управляющих усилий от органов управления. Анализ этих уравнений позволяет установить влияние аэродинамических характеристик аппарата, обусловленных таким воздействием, на управляемость.  [c.51]

Одним из эффективных в аэродинамической теории тонких тел является метод присоединенных масс. В отличие от рассмотренного ранее способа расчета аэродинамических коэффициентов и статических производных устойчивости, основанного на исследовании параметров обтекания с учетом интерференции, этот метод позволяет определить непосредственно аэродинамические характеристики. Вместе с тем метод присоединенных масс расширяет возможности аэродинамических расчетов для большего числа конфигураций летательных аппаратов и является основой определения наряду со статическими производными устойчивости также вращательных производных и производных по ускорениям.  [c.155]

Изучению характеристик не стационарного пограничного слоя аналитическими методами посвящено много работ, см., например, [1, 2, 7]. Однако проблемы, поставленные практикой, не могли быть решены этими методами в полном объеме. Появившиеся в начале 60-х годов у нас [4, 5, 8] и за рубежом [6, 7] численные методы решения уравнений нестационарного пограничного слоя существенно продвинули вперед решение данной проблемы, однако требовали большого количества машинного времени и не позволяли детально изучить эффекты, связанные с влиянием пограничного слоя на колеблющемся теле на общую картину обтекания. Значительные успехи в исследовании параметров нестационарного слоя были достигнуты в последнее время с применением линейной теории тел конечной толщины. На ее основе были определены не только локальные параметры нестационарного пограничного слоя на осе симметричном колеблющемся теле, но и получены новые данные о влиянии сил вязкости на аэродинамические характеристики гиперзвуковых летательных аппаратов.  [c.144]

Исследование всех видов взаимодействия между газовой средой и летательным аппаратом позволяет осуществить аэродинамические расчеты, связанные с вычислением количественных критериев указанного взаимодействия, а именно с определением аэродинамических сил и моментов, теплопередачи и уноса массы (абляции), При этом в современной постановке указанная задача сводится не только к определению суммарных аэродинамических величин (суммарной подъемной силы или лобового сопротивления, суммарного теплового потока от разогретого газа к поверхности и др,), но н к вычислению распределения аэродинамических параметров — силовых и тепловых —по поверхности обтекаемого летательного аппарата (давление и напряжение трения, местные тепловые потоки, локальный унос массы).  [c.7]


Современный аэродинамический эксперимент предусматривает большой комплекс измерений параметров газового потока, обтекающего модель летательного аппарата. Одна часть этих измерений связана с исследованием свойств набегающего (невозмущенного) течения, другая — с определением параметров газа в возмущенном потоке непосредственно на поверхности обтекаемого тела или вблизи него.  [c.50]

В основе экспериментальных исследований в аэродинамике лежит использование воздушного (газового) потока аэродинамических труб для целей измерения параметров обтекания моделей летательных аппаратов. В связи с этим особое значение имеют подбор наиболее совершенных измерительных приборов и устройств, правильная их эксплуатация, разработка и реализация правил проведения эксперимента, т. е. все то, что объединяют под общим понятием техники и методики измерений.  [c.106]

Одной из важных является задача о динамической устойчивости летательного аппарата. В заданном режиме полета аппарат об.шдает динамической устойчивостью, если отклонение кинематических параметров, вызванное. какими-либо воз.мущающими силами, в зависимости от времени уменьшается, поэтому возмущенное движение затухает и стремится к исходному программному полету. Если это условие не оеализуется, то наблюдается динамическая неустойчивость летательного аппарата. Исследование динамической устойчивости (или неустойчивости) осуществляется на основе уравнений вошущенного движения, в которые входят аэродинамические характеристики, зависящие от времени (так называемые нестационарные аэродинамические характерце пики).  [c.242]

Хотя вертолет является самым малошумящим летательным аппаратом вертикального взлета, уровень вызываемого им шума все же достаточно высок. Это может стать существенным недостатком вертолета, если в процессе проектирования не принять специальных мер по снижению шума. Поскольку требования в отношении уровня шума летательных аппаратов становятся все более жесткими, исследование звукоизлучения несуш,его винта в процессе проектирования вертолета приобретает важное значение. Вследствие периодичности обтекания лопастей винта спектр шума заметно концентрируется вблизи частот, кратных частоте NQ прохождения лопастей (рис. 17.1). Излучение шума вызывается тем, что постоянные по величине составляюш,ие подъемной силы и силы сопротивления враш,аются вместе с лопастями, а также изменением высокочастотных составляюш,их этих сил. В области высоких частот наблюдается расширение спектральных линий, что связано со случайными изменениями параметров течения, в частности с флуктуациями нагрузок, воз-никаюш,их под влиянием свободных вихрей. Акустическое давление изменяется по времени в основном с периодом 2n/NQ, причем возникают резкие пики давления, связанные с местными аэродинамическими явлениями, например проявлениями сжимаемости и вызываемыми вихрями изменениями нагрузок. В составе излучаемого несуш,им винтом шума различают вихревой (или широкополосный) шум, шум враш еная лопастей и хлопки лопастей. Хотя различие между этими составляюш,ими не столь велико, как это поначалу кажется, такая классификация полезна для представления результатов.  [c.821]

При проведении аэродина-мическнх экспериментов и расчетов необходимо принимать во внимание различные обстоятельства, связанные с физическим подобием исследуемых явлений обтекания. Аэродинамический расчет натурных летательных аппаратов (ракет, самолетов) основан на предварительных обширных исследованиях (теоретических и экспериментальных) обтекания моделей. В теории аэродинамического подобия находятся условия, которые должны соблюдаться в таких исследованиях на моделях, и устанавливаются характерные и удобные параметры, определяющие основные режимы исследуемых процессов, называемые параметрами или критериями подобия. Современные проблемы подобия, а также теория размерностей, широко используемая в аэродинамике, изложены в фундаментальном труде акад. Л. И. Седова Методы подобия и размерности в механике .  [c.9]

Значительное увеличение скоростей летательных аппаратов привело к необходимости учитывать в аэродинамических исследованиях специфические особенности газовых течений, обусловленные изменением физико-химических свойств воздуха. Если в обычной сверхзвуковой аэродинамике учитывалось свойство сжимаемости как важнейшее проявление особенности течения с большими скоростями, а влиянием температуры на термодинамические параметры и кииетические коэффициенты воздуха, а также на физикохимические процессы, которые могут протекать в нем, пренебрегали, то при очень больших (гиперзвуковых) скоростях на ь-срвое место выдвигаются особенности, связанные с влиянием высоких температур.  [c.49]

Теории несущих винтов не существовало. В распоряжении конструкторов были 4юрмулы, предназначенные для расчета корабельных винтов. Наиболее совершенной в этом отношении была теория идеального винта, предложенная в 1865 г. англичанином У. Рэнкином. Однако эта теория, хотя и описывала общий характер движения потока воздуха через винты, поясняла природу создания винтом индуктивной скорости, обусловливающей тягу, позволяла приближенно определить тяху и потребную для привода винта мощность, но не могла служить для выбора таких важных параметров несущих винтов, как число лопастей, хорда, профиль и угол установки их сечений. Проектировать винт, воспользовавшись этой теорией, было невозможно. Поэтому требовалось экспериментальное определение параметров несущего винта, обеспечивающих хорошие аэродинамические характеристики. Такие исследования, проведенные на том или ином уровне, сопровождали разработку многих проектов винтокрылых летательных аппаратов.  [c.12]



Смотреть страницы где упоминается термин Исследование аэродинамических параметров летательных аппаратов : [c.284]    [c.71]    [c.104]   
Смотреть главы в:

Прикладная аэродинамика  -> Исследование аэродинамических параметров летательных аппаратов



ПОИСК



Аэродинамические исследования

Аэродинамический шум

Летательные аппараты



© 2025 Mash-xxl.info Реклама на сайте