Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Конструктивные особенности газовых двигателей

КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ ГАЗОВЫХ ДВИГАТЕЛЕЙ  [c.125]

При проектировании нового двигателя обязательно указывается вид топлива, на котором двигатель будет работать, так как свойства топлива определяют особенности конструкции двигателя. Для характеристики конструктивных особенностей двигатели часто называют по роду используемого топлива. Например, двигатели, работающие на газообразном топливе, называют газовыми двигателями, а двигатели, работающие на бензине, — бензиновыми. Двигатели, в которых могут использоваться жидкие топлива различных видов, например бензин, керосин и дизельное топливо, получили наименование многотопливные, а двигатели, работающие и на газе и на жидком дизельном топливе, — газожидкостные.  [c.44]


К началу 1940 г. появляются первые практические результаты работ, проводившихся в СССР в области создания газотурбинных воздушно-реактивных двигателей, у которых предварительное сжатие поступающего в камеры сгорания двигателя атмосферного воздуха обеспечивалось компрессором, приводимым в действие газовой турбиной, использующей энергию истекающих из камер сгорания выхлопных газов. В 1938 — 1939 гг. под руководством В. В. Уварова были построены опытные газотурбинные установки ГТУ-3 мощностью по 1150 л. с. для самолета ТБ-3, выполненные по схеме турбовинтового двигателя. В 1938 г. А. М. Люлька, работавший в Харьковском авиационном институте в коллективе, создававшем паротурбинную силовую установку для тяжелого бомбардировщика А. Н. Туполева, разработал проект реактивного турбодвигателя РТД-1 с тягой 500 кгс с одно- или двухступенчатым центробежным компрессором с приводом от газовой турбины. Особенностью этого двигателя была относительно низкая температура газов перед турбиной (650° — 700°С), Принятые конструктивные решения и термодинамические параметры РТД-1 обеспечивали его создание в сравнительно короткие сроки на основе освоенных в то время промышленностью материалов. Расчетная оценка, выполненная А. М. Люлькой, показала, что одноместный самолет с двигателем РТД-1 может достичь скорости 900 км/ч [18].  [c.426]

Внешние условия, в которых должны были находиться и работать эти двигатели, оказывали существенное влияние на их конструктивные особенности. При проектировании указанных двигателей специалистам приходилось принимать во внимание целый ряд специфических обстоятельств. Так, например, в условиях невесомости топливо в баках будет хаотически перемешиваться с пузырями газа, применяющегося для наддува баков, что может в конечном итоге привести к выходу из строя некоторых элементов двигателя. Глубокий вакуум приводит к тому, что поверхность элементов двигателя покидают адсорбированные на этих поверхностях газовые молекулы, а также частицы конструкционных материалов, смазки, покрытий и пр. В результате изменяются фрикционные свойства поверхностей, может произойти самопроизвольная сварка подвижных контактирующих металлических частей двигателя. На различные материалы отрицательно воздействует и солнечная радиация, элементы космических ЖРД находятся в сложных тепловых условиях их температура может колебаться в широких пределах (- 150 + 150°С).  [c.106]

Газ В цилиндре двигателей с внутренним смесеобразованием подается через клапаны. Газовые клапаны имеют механический, гидравлический или электрический приводы, применяемые в зависимости от типа двигателя и его конструктивных особенностей. Следует отметить, что схема привода клапана должна учитывать наличие перекрытия клапанов с тем, чтобы избежать попадания газа в выхлопной коллектор.  [c.135]


Выпуск воздуха производится через ш,ели и отверстия, что не обходится без увеличения гидравлических потерь из-за возмуш,е-ний в пограничном слое. Кроме того, из системы подвода охлаждающего воздуха неизбежны утечки в проточную часть турбины. Источники утечек в турбине многочисленны, несмотря на применяемые очень сложные конструктивные мероприятия (см., например, уплотнения на рис. 33). Это существенно отражается на характеристиках двигателя, так как приводит к прямому снижению КПД турбины, особенно при радиальном направлении втекания воздуха в газовый поток.  [c.60]

Влияние принципиально новых конструктивных решений на снижение конструктивной металлоемкости особенно убедительно подтверждается сравнительным анализом конструкций газовых и паровых турбин, например, стационарная газовая турбина типа ТА мощностью 1200 л. с. весит 5000 кг, в то время как поршневой двигатель той же мощности в зависимости от типа и конструкции весит от 10 ООО до 15 ООО кг.  [c.108]

Мощный быстроходный двигатель с воспламенением от сжатия должен обладать прочной и жесткой силовой схемой. Этому требованию двигатель В-2 удовлетворяет в полной мере. Прежде всего он имеет очень жесткую головку, что необходимо в таких двигателях для надежной работы газового стыка. Жесткость головки усилена тем, что она увеличена по высоте за счет помещения камеры сгорания в головке. Общая прочность и жесткость двигателя созданы за счет того, что комплекс головки, блока и верхней части картера соединен анкерными связями. Кроме того, надо обратить внимание на то, что нижние анкерные связи, держащие подвески, и верхние анкерные связи перекрывают друг друга по длине, что ликвидирует возможность появления напряжений разрыва в остове двигателя. Кроме того, анкерные связи, соединяя в одно целое головку, блок и картер, создают как продольную, так и поперечную жесткость двигателя. Особый интерес представляет принцип создания жесткости конструктивного узла соединения подвески картера. Для усиления жесткости этого узла против боковых расталкивающие усилий от шатунов отдельных рядов подвеска входит глубоко в щеки картера и, кроме того, что особенно важно, щеки картера стянуты отдельными горизонтальными анкерными связями. При всей жесткости силовой схемы гильза двигателя имеет свободное расширение, что принципиально важно. Передача к верхним клапанам осуществляется при помощи передаточного валика и конических шестерен. В каждом цилиндре имеется четыре клапана. Двигатель еще больше выиграл бы, если бы вместо насоса и форсунки была поставлена насос-форсунка.  [c.374]

В газовых модификациях двигателей, применяющихся в газовой промышленности, рекомендуемое значение степени сжатия 12,0—12,5 [6]. Это позволяет достигать высоких к. п. д. и удельной литровой мощности. По своей детонационной стойкости природный газ допускает доводить степень сжатия в автомобильных двигателях до 14 и более единиц, однако требование двухтопливности и конструктивные особенности конкретных двигателей ограничивают допустимые значения этого параметра.  [c.86]

При проектировании нового двигателя обязательно указывается вид топлива, на котором двигатель будет работать, так как свойства топлива определяют особенности конструкции двигателя. Для характеристики конструктивных особенностей двхг-гателп часто называют по роду используемого топлива. Например, двигатели, работающие на газообразном топливе, называют газовыми двигателями, а двигатели, работающие на бензине, — бензиновыми.  [c.12]

По использованию рабочего тела турбины выделяют ТНА с автономной или предкамерной турбиной, каждая из которых имеет характерные конструктивные особенности, что предопределяет выбор компоновочной схемы ТНА. Так, автономная турбина малорасходная т = 2...5 %т ), поэтому проблема подвода и отвода газа от нее решается достаточно просто и практически не оказывает влияния на выбор компоновочной схемы. Кроме того, автономные турбины вьшолняются, как правило, активными с относительно малым давлением газа на выходе - (2...5) 10 Па, что упрощает систему уплотнений самой газовой полостью турбины. И наоборот, для предкамерной турбины характерны большие расходы рабочего тела (/й . = 30...70 % и более) и высокие значения давлений на входе и выходе турбины. Как правило, давление газа на выходе предкамерной турбины всегда больше давления в камере двигателя на 10...30 %, а давление на входе в турбину составляет (1,5...2) р . У такой турбины для подвода и отвода больших расходов газа с высоким давлением газоводы получаются толстостенными со сложной конфигуращ1ей. Кроме того, конструкщ1я уплотнительного узла, обеспечивающего надежную герметизацию полостей с высоким давлением газа турбины и жидкостной насоса, получается сложной.  [c.199]


После прекращения процесса горения заряда появляется опасность повторного несанкционированного его воспламенения. Эту опасность вызывает лучистый тепловой поток, испускаемый разогретыми элементами конструкции, в которых в процессе работы двигателя аккумулируется льшое количество теплоты. Необходимость охлаждения и величина требуемого для исключения повторного самовоспламенения заряда охладителя зависят от конструктивных особенностей ЭУ (расположение нагретых элементов конструкции относительно поверхности заряда при его гашении) и теплофизических свойств топлива и материалов конструкции. Так, например, использование в качестве ТЗП материалов сублимирующего класса с температурой возгонки Тю, сравнимой с температурой самовоспламенения заряда, исключает возможность повторного воспламенения заряда. Таким образом, процесс гашения з яда во многих случаях должен включать не только гашение газового объема, но и охлаждение конструкции, т.е. отбор тепла от твердого тела, теплоемкость и теплопроводность которого неизмеримо больше, чем у газа. Типичная схема РДТТ с узлом гидрогашения (УГГ) представлена на рис. 3.9.  [c.178]

Относительное снижение угловой скорости ф1 зависит от углового ускорения коленчатого вала, определяемого дисбалансом крутящего момента, и времени запаздывания воздействия системы автоматического регулирования. Это время определяется конструктивными особенностями регулятора скорости, величиной масс и податливостей деталей, зазорами в звеньях механизмов, связывающих коленчатый вал с регулятором и регулятор с регулирующим органом. По экспериментальным данным величина Ф1 д за период запаздывания воздействия системы автоматического регулирования в комбинированных двигателях с газовой связью может достигать 50% снижения угловой скорости за весь переходный процесс 1—2. Для уменьшения фх д и колебаний кинетической энергии системы применяют двухимпульсные регуляторы скорости.  [c.363]

Важнейшей особенностью работы конструктивных элементов является циклический характер температурного поля, определяемый режимом работы изделия. Например, за двухчасовой полетный цикл транспортного газотурбинного двигателя (ГТД) температура выходной кромки лопатки существенно изменяется, при этом довольно значительно меняются и скорости нагрева при выходе на полетный режим [25]. Значительная неравномерность температурного поля свойственна охлаждаемым рабочим лапатка(М газовой турбины [71]. Менее опасные сочетания температур t и напряжений а реализуются в турбинном диске [71], однако для них свойственны высокие уровни температур и значительные градиенты. Из приведенных данных видно, что для температурного цикла нагрева элемента характерно чередование нестационарных и стационарных участков, причем последние занимают значительное время цикла. Высокие уровни температур, циклический характер температурного воздействия, чередование нестационарных и стационарных режимов создают е материале особые условия работы высокую термомеханическую напряженность, больщие уровни термических напряжений. Все это обусловливает в большинстве случаев работу материала конструктивного элемента за пределами упругости в наиболее напряженных точках наблюдается процесс циклического упругопластического деформирования, приводяший материал к разрушению за ограниченное число циклов (Ю —10 ).  [c.8]

Пусть к конструкции блока предъявляются повышенные весовые и особенно габаритные требования, что имеет место, например, в авиации. В соответствии с этим в результате довольно интенсивного развития газотурбинных двигателей перешли от четырехопорных схем роторов к трехопорным, как наиболее рациональным, улучшившим габаритные и весовые характеристики силовых установок. Первоначальные конструкции были по существу механическим соединением двух самостоятельных агрегатов компрессора того или другого типа и газовой турбины лишь позже появились конструкции, в которых органически слиты между собой оба агрегата. Представляется, что и агрегаты типа турбогенераторов, если к ним предъявляются повышенные требования с точки зрения габаритов и веса, что определяется их назначением, должны также пройти аналогичный путь своего конструктивного совершенствования. Однако выбор типа ротора для двухмашинного агрегата важен также и с точки зрения получения у него хорйших вибро-акустичсских характеристик. В этой связи мы и отметим положительные и отрицательные свойства агрегатов с трехроторным и четырехроторным ротором.  [c.454]

Двигатели выполняются с высоконапорными одновальными или двухвальными компрессорами, имеющими малое число ступеней с регулируемыми направляющими аппаратами нескольких ступеней, и с эффективными охлаждаемыми турбинами. Наиболее современные двигатели имеют пять опор роторов при двухвальной схеме. Эти ДТРДФ выполнены по схеме со смешением воздушного и газового потоков и форсированием после смешения. Сочетание этих особенностей с высокими параметрами рабочего процесса вместе с оптимизацией конструктивно-технологических решений обеспечивают чрезвычайно малую удельную массу двигателей (-сдв = 0,0135ч-0,012 кг/Н).  [c.22]


Смотреть главы в:

Транспорт на газе  -> Конструктивные особенности газовых двигателей



ПОИСК



Газовые двигатели

Газовые двигатели—см. Двигатели газовые

Конструктивные особенност

Конструктивные особенности

Конструктивные особенности двигателя



© 2025 Mash-xxl.info Реклама на сайте