Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения движения упругого тела Тензор напряжений

УРАВНЕНИЯ ДВИЖЕНИЯ УПРУГОГО ТЕЛА. ТЕНЗОР НАПРЯЖЕНИЙ  [c.236]

Рассмотрим невозмущенное движение упругого тела, характеризуемое вектором перемещений гг -, тензором напряжений ог , векторами объемных и поверхностных сил X и ру. Невозмущенное движение в прямоугольных декартовых координатах описывается уравнениями  [c.331]

Несжимаемые шела. Известно, что многие упругие при конечных деформациях материалы деформируются без заметного-изменения объема. Такие материалы относятся к несжимаемым упругим материалам. Практически все решения задач теории упругости при конечных деформациях получены именно для таких материалов. Кроме того что все движения несжимаемых материалов происходят без изменения объема, их характерной особенностью-является то, что тензор напряжений не полностью определяется деформацией. Действительно, ясно, что к напряжениям в деформированном несжимаемом материале можно добавить с любым множителем напряжения, которые обычно связаны с изменением объема, т. е. произвольное гидростатическое давление. При этом деформация тела не изменяется. Другими словами, дополнительное приложение гидростатического давления к несжимаемому упругому телу изменяет напряжения в нем, но не влияет на деформации или, для гиперупругих материалов, энергию деформации. Поскольку изохорическим движениям соответствует равенство единице третьего главного инварианта /д, уравнение состояния для несжимаемых материалов имеет вид  [c.249]


Заметим, что ГИУ (1.4) можно получить сразу из ГИУ статической теории упругости (см. уравнение (10) на стр. 53), если использовать известную аналогию между несжимаемой упругой средой (коэффициент Пуассона v = 0,5) и несжимаемой вязкой жидкостью в стоксовском приближении. Согласно этой аналогии, любое решение уравнений теории упругости при V = 0,5 и произвольном модуле сдвига х может быть интерпретировано как медленное движение вязкой жидкости с вязкостью fx. Поле скоростей в жидкости совпадает с полем смещений точек упругого тела, а распределение давлений-— с гидростатической компонентой тензора напряжений ). Поэтому ГИУ (1.4) получается из (10) (см. стр. 53) предельным переходом при v = 0,5.  [c.185]

В п. 2.2 получены кинематические зависимости, которые связывают относительную деформацию и вращение с первой производной от вектора смещения. Здесь введем, с одной стороны, уравнения связи для упругого тела, с помощью которых устанавливается зависимость между тензором относительных деформаций и тензором напряжений, и, с другой стороны, дифференциальные уравнения движения или равновесия, которые связывают градиент тензора напряжений с ускорением элемента таким образом, в последнем (имеется в виду ускорение) фактически неявно присутствует вторая производная от смещения. Однако прежде всего обратимся к вопросам кинематики и подсчитаем изменение кривизны поверхности предмета, при этом  [c.154]

Получим уравнения идеально упругого твердого тела, исходя из системы (10.72) — (10.75). Поскольку тензор напряжений (13.1) выражается через тензор деформации, а тензор деформации через вектор смещения и (г, /), выберем этот вектор в качестве неизвестной функции в уравнениях движения (10.73). Смещение и данной частицы всегда можно определить, как  [c.547]

Присоединим к краевым условиям шесть определяющих уравнений, или уравнений состояния, выражающих, например, для упругого тела обобщенный закон Гука, зависимости между компонентами тензора напряжений и тензора деформаций для малых упруго-пластических деформаций, уравнения теории На-вье — Стокса в случае движения вязкой жидкости и т. д. В случае движения сжимаемой среды к краевым условиям присоединяется уравнение состояния и уравнение притока энергии.  [c.46]


Из этого уравнения в теории упругости получают (путем подстановки выражения через компоненты тензора напряжений) так называемые уравнения Бельтрами, которым должны удовлетворять компоненты тензора напряжений. Это связано с тем, что уравнения движения упругого тела формулируются, в конечном счете, относительно вектора смепдения и, компоненты которого могут быть выражены через U , только при выполнении условий совместности.  [c.81]

В общем случае изучение механических процессов в начально-деформированных телах необходимо проводить в рамках нелинейной теории упругости. Однако, множество процессов, происходящих в начально-деформированных телах, можно рассматривать в рамках линеаризованной теории наложения малых деформаций (возмущений) на конечные деформации (начальное состояние) в предположении, что возмущения малы. Традиционно [30, 41, 42] различают три состояния тела естественное (ненапряженное) состояние (ЕС), начально-деформированное состояние (НДС) и актуальное (возмущенное по отношению к НДС) состояние. При этом особое значение приобретает выбор системы координат, которая может быть связана либо с естественной конфигурацией (система координат Лагранжа или материальная система координат), либо с актуальной конфигурацией (система координат Эйлера) [30, 41, 42]. Линеаризованные уравнения движения существенным образом зависят как от выбора системы координат, так и от выбора определяющих соотношений, поскольку имеет место возможность определения напряженного состояния различными тензорами (Коши, Пиола, Кирхгофа и т.д.) и множественность их представления через меры деформации (Коши-Грина, Фингера, Альманзи) или градиент места. Более детально с особенностями постановки задач для преднапряженных тел можно ознакомиться в монографиях А. И. Лурье [41], А. Лява [42] и А. Н. Гузя [30].  [c.290]

Перейдем теперь к динамическим нелинейным эффектам, начав с более простого случая изотропных твердых тел. Будем считать, что статическое воздействие отсутствует, вследствие чего можно оперировать с переменными естественного состояния. Проанализируем сначала случай, когда акустические волны конечной амплитуды распространяются в одном и том же направлении(/ oxiw-неарное взаимодействие). Для этого мы должны исходить из уравнения движения (2.5) и уравнения для внутренней энергии изотропного твердого тела, упругие свойства которого определяются пятью модулями упругости — уравнение (8.1.15). Тензор Pik при этом можно выразить либо через термодинамические напряжения tik, либо определить непосредственно путем дифференцирования термодинамического потенциала (8.1.15) по градиентам вектора смещений (см. 2).  [c.285]

Книга состоит из двух частей. В первой части изучаются уравнения нелинейного деформирования твердых тел как в начальной, так и в актуальной конфигурации. Рассмотрены различные определения тензоров деформаций и напряжений. Приведены альтернативные формы уравнений равновесия (движения) и формулировки этих уравнений относительно скоростей. Представлены определяющие соотношения для различных моделей материалов (упругие, упругопластические, термоупругопластические с учетом деформаций ползучести). Отмечается, что для каждой модели материала и/или для каждой степени нелинейности из всех возможных формулировок уравнений выгоднее использовать од-  [c.11]


Смотреть страницы где упоминается термин Уравнения движения упругого тела Тензор напряжений : [c.7]    [c.153]   
Смотреть главы в:

Теоретическая механика  -> Уравнения движения упругого тела Тензор напряжений



ПОИСК



Напряжения Уравнения

Напряжения упругие

Напряжения. Тензор напряжений

Напряжения. Уравнения движения

Тензор напряжений

Тензор упругих напряжений

Тензор упругости

Упругие тела

Упругость напряжение

Уравнения Уравнения упругости

Уравнения движения (упругого тела)

Уравнения упругого КА

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте