Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электродное покрытие кислое

Применительно к сварке подавляющего большинства кипящих и спокойных низкоуглеродистых сталей наибольшее распространение получил кислый процесс с использованием силикатных марганцевых флюсов или кислых электродных покрытий. Эти флюсы (шлаки) сочетают в себе превосходные технологические свойства (стабильность горения дуги, требуемое формирование шва в различных пространственных положениях, легкая отделимость шлака от поверхности шва) с надлежащими металлургическими характеристиками. Они обеспечивают дополнительное легирование шва кремнием и марганцем, окисляют некоторое количество углерода, способствующего, как известно, появлению кристаллизационных трещин в шве.  [c.58]


В покрытиях современных электродов используется в основном шлако-газовая защита. Электродные покрытия должны иметь определенный интервал затвердевания, что в свою очередь определяет применимость электродов для сварки в различных положениях. В зависимости от того, как осуществляется защита расплавленного металла сварочной ванны — электродные покрытия разделяются на рудно-кислое, фтористо-кальциевое (основное), рутиловое и газозащитное.  [c.54]

Газовая защита дугового пространства создается органическими составляющими (например, крахмалом). Поэтому при сварке электродами, имеющими рудно-кислое покрытие, происходит интенсивное образование газов СО, Нг, СО2, Н2О, которые образуют хорошую защиту расплавленного металла сварочной ванны от азота. Высокое содержание в этом покрытии гематита (РегОз) требует значительного количества раскислителей в виде ферромарганца. При расплавлении электродного покрытия гематит, соединяясь с железом, образует закись железа (РеО).  [c.55]

Электродные покрытия можно разделить по химическому составу жидкого шлака на кислые и основные.  [c.613]

Стабилизирующие (ионизирующие) компоненты покрытий повышают стабильность горения дуги. При расплавлении покрытия они легко разлагаются (диссоциируют) с образованием свободных электрически заряженных частиц (электронов, ионов), повышая степень ионизации дугового промежутка. С этой целью используют химические элементы щелочной и щелочно-земельной группы, имеющие низкий потенциал ионизации калий, натрий, кальций, барий. Эти элементы содержатся в таких компонентах электродных покрытий, как мел, мрамор, известняк, слюда, полевой шпат, гранит, натриевое и калиевое жидкое стекло, поташ, хромпик, углекислый барий, марганцево-кислый калий, кальцинированная сода.  [c.100]

Классификация электродных покрытий. Электродные покрытия по химическому составу и металлургическому воздействию на металл сварочной ванны в соответствии с ГОСТ 9466—75 делятся на следующие виды рутиловые покрытия (Р), основные (Б), целлюлозные (Ц), кислые (А).  [c.101]

Электродные покрытия (ГОСТ 9466 — 75) по виду составов подразделяются на кислые (А), рутиловые (Р), основные (Б), целлюлозные (Ц) и прочие (П).  [c.28]


Химический состав флюса выбирают в зависимости от состава свариваемого металла и электродной проволоки. Как и электродные покрытия, флюсы делятся на кислые и основные в зависимости от характера образуемых флюсом шлаков. Основными элементами, входящими в состав флюса, являются кремний и марганец. Кремний входит в виде окиси кремния и способствует получению плотных, беспористых швов.  [c.174]

Тип электрода определяется требованиями к наплавленному металлу сварочного шва. Каждому типу способствует одна или несколько марок электродов, характеризующихся составом покрытия, маркой электродной проволоки, технологическими свойствами и другими показателями. Покрытия подразделяются по видам составов Р (рудно-кислое), Ф (фтористо-кальциевое), Т (рутиловое) и  [c.43]

О (органическое). Вид покрытия отражается в условном обозначении марки электрода, например ЦМ7-Э42-5.0-Р (ЦМ7 — марка, Э42 — тип электрода, 5,0 — диаметр стержня, Р — рудно-кислое покрытие). Характеристика электродов каждой марки (условное обозначение, марки свариваемой стали, возможность сварки в различных пространственных положениях, вид электродной проволоки, вид покрытия, указания по режимам сварки, надобность предварительного подогрева и последующего отжига, свойства наплавленного металла щва, коэффициент наплавки) указывается в паспорте на данную марку, утверждаемого в установленном порядке.  [c.43]

Существенным недостатком кислых медных электролитов является невозможность непосредственного получения в них качественных покрытий на сталь и чугун. При погружении стальных и чугунных изделий в раствор происходит вытеснение меди железом (см. также раздел электродные потенциалы ) и на поверхности без действия тока выделяется контактная медь, обладающая большой пористостью и имеющая плохое сцепление с основным металлом. Поэтому перед меднением стальных и чугунных изделий в сернокислых электролитах надо предварительно осадить тонкий слой меди в цианистых медных электролитах. Кроме того, кислые электролиты обладают плохой рассеивающей способностью.  [c.167]

Гальванические покрытия алюминия связаны с рядом затруднений, которые вызываются наличием на алюминии и его сплавах естественной окисной пленки, высоким значением электродного потенциала, наличием микропор, трещин и водородных включений, взаимодействием алюминия как со щелочными, так и с кислыми электролитами.  [c.218]

Технологический процесс покрытия и главным образом подготовка алюминия значительно отличаются от типовых процессов покрытия других металлов, что объясняется рядом причин наличием на алюминии и его сплавах трудноудаляемой окисной пленки, взаимодействием алюминия как с кислыми, так и со щелочными электролитами, резко отрицательным электродным потенциалом алюминия (что является причиной контактного вытеснения алюминием большинства металлов из их растворов) и наличием в металле микропор, трещин, включений водорода и др.  [c.221]

Величина стандартного электродного потенциала Фрь -Ьрь = —0,126 В показывает, что свинец термодинамически неустойчив в кислых растворах, но устойчив в нейтральных растворах. Ток обмена для водородной реакции на свинце очень мал (10-13—10-Ч А/см ), но защита от коррозии обычно происходит путем механической пассивации локальных анодов коррозионных ячеек, поскольку большинство солей свинца нерастворимо и часто образует защитные пленки нли покрытия.  [c.116]

Электродное покрытие по типу своего состава может быть кислым (А), рутиловым (Р), основным (Б), целлюлозным (Ц), также существуют прочие (П) электродные покрытия. Кислые покрытия (АНО-2, СМ-5 и др.) состоят в основном из окислов железа и марганца или его руд, кремнезема, ферромарганца. Рутиловые покрытия (АНО-3, АНО-4, ОЗС-3, ОЗС-4, ОЗС-6, МР-3, МР-4 и др.) содержат в своем составе преобладающее количество рутила, и имеют добавки из талька, мрамора, каолина, ферромарганца, целлюлозы и жидкого стекла. Рутиловые покрытия при сварке менее вредны для дыхания, чем другие покрытия электродов. Целлюлозные покрытия (ВСЦ-1, ВСЦ-2, ОЗЦ-1 и др.) состоят из целлюлозы, органических смол, ферросплавов, талька и др. Основные покрытия (УОНИИ-13/45, УП1/45, ОЗС-2, ДСК-50 и др.) не содержат в своем составе железа и марганца.  [c.151]


В зависимости от рода получаемого шлака электродные покрытия могут быть разбиты на кислые и основные. Важнейшим моментом, определяющим качество покрытия, является степень его раскислённости или окислительная способность образуемых им шлаков. Даже в условиях весьма эффективной защиты расплавленного металла от вредного внешнего воздействия атмосферного кислорода нераскис-лённые или слабо раскисленные шлаки могут насытить металл шва значительным количеством кислорода за счёт перехода свободных окислов из шлака в металл. Аналогичное явление может иметь место при использовании в покрытии рудных компонентов, которые при нагреве выделяют свободный кислород, например, марганцевая руда. В советской практике для многих марок толстопокрытых электродов применяются главным образом основные рас-кислённые покрытия, особенно при сварке легированных сталей. Для регулирования химического состава металла шва и его механических свойств в советской практике в подавляющем большинстве марок покрытых электродов, применяемых для сварки углеродистых и низколегированных конструкционных сталей, практикуется легирование через покрытие. Для этой цели используются в основном различные ферросплавы, которые одновременно осуществляют и другие функции в электродном покрытии (раскисление, создание мелкозернистости металла шва, повышение устойчивости дуги, улучшение технологических свойств шлака).  [c.297]

По назначению выделяют три группы флюсов для сварки углеродистых и легированных сталей, для сварки высоколегированных сталей, для сварки цветных металлов и сплавов. Внутри этих групп флюсы могут различаться по размеру зерна в зависимости от диаметра электродной проволоки чем больше диаметр проволоки, тем крупнее частицы флюса. По химическому составу различают кислые и основные флюсы в зависимости от соотношения соответствующих окислов в составе. По способу изготовления флюсы разделяют на плавленные и неплавленныс. Неплавленные флюсы изготавливают без плавления компонентов шихты. К ним относят флюсы керамические и изготовленные путем измельчения природных минералов. Керамические флюсы изготавливают из тех же компонентов, что и электродные покрытия, их замешивают на жидком стекле, а затем спекают и дробят. Недостаток таких флюсов - низкая прочность их зерен (много отходов, мелких фракций) и возможная неоднородность состава из-за разделения веществ с разным удельным весом при их перемешивании.  [c.142]

Для сварки низколегированных сталей применяют так называемые основные флюсы [17 и электродные покрытия [4, 5, 14 и др. ]. Не касаясь здесь металлургических характеристик шлаков, образующихся при сварке толстопокрытыми основными электродами (на этом вопросе мы остановимся в 3 этой главы), отметим, что так называемые основные сварочные флюсы лишь весьма условно можно назвать основными. Наличие в их составе довольно больших концентраций двуокиси кремния или алюминия сообщает шлакам скорее кислый, чем основной характер. Эти флюсы (шлаки) заметно уступают силикатным по технологическим свойствам, но обладают способностью снижать опасность появления горячих трещин они, как правило, исключают возможность развития кремневосстановительных процессов и засорения металла шва силикатными включениями. Некоторые из них обладают способностью обессеривать металл сварочной ванны.  [c.58]

Отрицательное действие ниобия на сварные швы аустенитных сталей типа 18-8 усиливается при использовании силикатных или даже низкокремнистых флюсов и кислых электродных покрытий. Поэтому известные достоинства основных шлаков и фтористокальциевого покрытия проявляются в наибольшей степени при наличии ниобия в металле шва.  [c.210]

Виды электродных покрытий установлены ГОСТ 9466—75. Различают электроды А — с кислым покрытием Б — основным покрытием Ц — целлюлозным покрытием Р — рутило-вым покрытием П — покрытием прочего вида. При наличии покрытия смешанного вида используют соответствующее двойное обозначение. Если в покрытии содержится более 20 % железного порошка, то к обозначению вида покрытия добавляют букву Ж .  [c.61]

По химическому составу жидких шлаков электродные покрытия можпо подразделить на кислые и основные. В шлаках кислых покрытий преобладает окись кремния SiOj. Кислые шлаки обладают хорошими раскисляющими свойствами, но через них нельзя в широких пределах легировать наплавленный металл в связи с интенсивным выгоранием легирующих примесей. В состав кислых покрытий входят марганцевая руда, полевой шпат, рутил (природный минерал, состоящий в основном из двуокиси титана) и т. п. Электроды с кислыми покрытиями (руднокислым, рутиловым и органическим) применяют для сварки углеродистых и низколегированных сталей. В шлаках основных покрытий преобладает окись кальция (СаО). Основные шлаки  [c.281]

По химическому составу жидких шлаков электродные покрытия можно разделить на кислые и основные. В шлаках кислых покрытий преобладает окись кремния SiOj. Кислые шлаки обладают хорошими раскисляющими свойствами, но через них нельзя производить широкое легирование наплавленного металла в связи с интенсивным выгоранием легирующих примесей. В состав кислых покрытий входят марганцевая руда, полевой шпат, рутил (природный минерал, состоящий в основном из двуокиси титана) и т. п. Электроды с кислыми покрытиями (рудно-кислым, рутило-вым) применяется для сварки углеродистых и низколегированных сталей. В шлаках основных покрытий преобладает окись кальция СаО. Основные шлаки обеспечивают достаточно хорошее раскисление и позволяют вводить в металл шва значительные количества легирующих элементов. В состав основных покрытий входит мрамор, плавиковый шпат ( aFj) и ферросплавы. Электроды с основным покрытием (фтористокальциевым) применяют для сварки легированных и высоколегированных сталей.  [c.308]


Электродные покрытия изготовляются на базе окислов железа, марганца с введением органических веществ или на базе карбонатов (мрамор, плавиковый шпат и др.), не содержащих активного кислорода в виде окислов железа и марганца. Таким образом в зависимости от преобладающих компонентов электродные покрытия можно разделить на две большие группы покрытия, дающие кислые шлаки и покрытия, дающие основные шлаки. Кислые шлаки образуются, например, при сварке электродами ОММ-5, МЭЗ-04 и др. Металл такого шва имеет повышенную окисленность и пониженную ударную вязкость. Он склонен к образованию горячих трещин, хладнохрупок. В месталле шва находится незначительное количество легирующих элементов.  [c.246]

Электроды Для сварки углеродистых и легированны х конструкционных сталей обозначают по марке и типу электрода, диаметру стержня, по типу покрытия и ГОСТу. Например, условное обозначение электрода ЦМ7-Э42-5.0-Р ГОСТ 9467—60 расшифровывается следующим образом ЦМ7—марка электрода, Э42 — тип электрода (Э — электрод для дуговой сварки 42 — минимальное гарантируемое временное сопротивление ме-галла шва в кГ1мм при растяжении) 5,0 — диаметр электродного стержня в миллиметрах Р — рудно-кислый тип покрытия (рудно-кислое покрытие обозначается буквой Р, фтористо-кальциевое — Ф рутиловое — Т и органическое — О) в конце указан номер ГОСТа, которым стандартизирован электрод.  [c.65]

Щелочные цианидные электролиты для получения кадмиевых, как и других покрытий, отличаются от кислых электролитов прежде всего более равномерным распределением металла по поверхности катода и мелкокристаллической структурой осадков. В результате взаимодействия оксида, гидроксида, карбоната или сульфата кадмия с цианидом натрия или калия образуется соединение Na2 d( N)4. Цианид берут с избытком, чтобы обеспечить растворение соли и стабильность кадмиевого комплекса, а также растворение кадмиевых анодов. Для нормального хода электродных процессов соотношение концентрации в электролите свободного цианида и кадмия должно быть 1 1,6 — 1 1,8, причем большее соотношение применяют при кадмировании деталей сложной конфигурации.  [c.127]

V, а потенциал водорода даже в нейтральном растворе—0,405 V, следовательно при электролизе должен сперва разряжаться водород, но т. к. перенапряжение водорода на цинке велико, то цинк легко выделяется на растворе даже из кислых растворов, чем широко пользуются как при получении цинка и нек-рых других металлов из руд, так и при процессе электролитич. покрытия металлами (электролитич. цинкование, кадмирование, никелирование и т. д.) и при количественном определении металлов методом электролиза (электроанализ). П. г. лежит также в основе работы аккумуляторов (см. Аккумуляторы электрические). Устранение П. г., или т. н. деполяризация, может производиться различными путями, напр, в элементах, где П. г. обусловлена обычно выделением водорода, вводят с этой целью окислители (перекись марганца в элементах Лекланше, двухромовокислый калий в элементах Грене и т. д.). Наоборот, анодную П. г., связанную с выделением кислорода, можно устранить добавлением восстановителей. Технически важное значение имеет деполяризация при катодном осаждении металлов, каковую можно представить себе след, обр. как было уже установлено, П. г. при осаждении металлов сказывается в том, что потенциал осаждения металла является более отрицательным, чем его равновесный потенциал. С точки зрения ф-лы Нернста (см. Потенциал электродный) это можно представить себе, приписав электролитической упругости растворения све-жеосажденного металла ббльшую величину, чем та, к-рую имеет металл при равновесии.  [c.154]

Применяли также переменные токи асимметричной формы, главным образом в гальванопластике и для толстых покрытий в машиностроеиии. В случае больших периодов (малых частот), например, в несколько секуид, используется термин периодическое реверсирование тока (п. р. т.). Считается, что преимущество использования п. р. т.-режима заключается в том, что прн реверсе тока происходит избирательное растворение выступов в результате чего получаются более гладкие толстые покрытия. При этом предполагают, что в течеиие анодного периода электродный процесс меняется на обратный, что в общем имеет место не всегда. Например, при электроосаждении хрома покрытие в анодные периоды становится пассивным. В кислых ваннах золочения (на основе цианидов золота) процесс также необратим. Позднее было обнаружено, что применение асимметричных переменных токов более высокой частоты (порядка 500 Гц) способствует улучшению свойств никелевых покрытий, полученных в хлоридных ваннах.  [c.346]

Смола ФЛ-2 — поликонденсат фурилового спирта, при комнатной температуре представляет собой вязкую пастообразную массу коричневого цвета. Отверждается либо при температурах выше 250°, либо при введении кислых катализаторов (контакта Петрова, фосфорной кислоты, нафталина и т. д.). Хорошими свойствами обладает мастика, получаемая из смолы ФЛ-2 и электродного графита (отходы), измельченного до 20—30 мк. Мастика такого типа плохо отверждается без ускорителя, поэтому последний вводят в ее состав. Рекомендуют ускоритель вводить в графит, который смешивается с фуриловой смолой непосредственно перед нанесением мастики на покрываемую поверхность. При изготовлении мастики вязкость смолы ФЛ-2 должна составлять не более 50 секунд (по вискозиметру ВЗ-4). Перед нанесением мастику рекомендуется предварительно подогревать при температуре 50° в течение 24 часов, так как это повышает долговечность получаемого покрытия. В качестве ускоритёля отверждения мастики применяют смесь окисного сернокислого железа и концентрированной серной кислоты (на 1 кг смолы ФЛ-2 соответственно по 100 и 8 вес. ч.). При отверждении мастики (в течение  [c.216]


Смотреть страницы где упоминается термин Электродное покрытие кислое : [c.60]    [c.63]    [c.72]    [c.119]    [c.17]    [c.18]    [c.58]    [c.114]    [c.111]   
Теория сварочных процессов (1988) -- [ c.393 ]



ПОИСК



Кисел

Покрытия электродные -см. Электродные покрытия

Электродные покрытия



© 2025 Mash-xxl.info Реклама на сайте