Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общий аппарат теории возмущений

Эта формула следует из общего аппарата теории возмущений [ 10, уравнение (241,) и стр. 137—138], Здесь уже выполнено интегрирование по направлениям начального и конечного импульсов, и подразумевается, что энергия и импульс связаны соотношениями а = р 12т и е = /> 72т.  [c.124]

Общий аппарат теории возмущений.  [c.128]

ОБЩИЙ АППАРАТ ТЕОРИИ ВОЗМУЩЕНИЙ 129  [c.129]

Применение аппарата теории возмущений к общей формуле (356) даёт следующее общее выражение для матричного элемента рассеянного излучения 8  [c.220]


Следует указать еще на одну важную область использования аппарата сопряженных уравнений переноса тепла и функций ценности тепловых источников. Речь идет об оптимизации характеристик теплофизической системы на основе использования функционалов теории возмущений. Подобно тому, как это делается в нейтронной физике [1, 72, 98], в теплофизических исследованиях функционалы теории возмущений позволяют в наиболее общем виде сформулировать алгоритмы решения вариационных задач на поиск оптимальных распределений тех или иных параметров системы. Остановимся на этом подробнее.  [c.112]

При решении конкретных задач обычно ограничиваются только первыми двумя моментами распределения средним значением и корреляционной функцией. Основываясь только на этих двух простейших характеристиках случайного процесса, можно получить весьма простой математический аппарат и расчетные формулы для статистического анализа линейных систем с постоянными параметрами при стационарных возмущениях, Ясно, что при этом мы получаем приближенный метод, способный дать только оценки для общего случая. Теория, которая оперирует только первыми двумя моментами распределения (средним и корреляционной функцией), называется корреляционной теорией случайных процессов. Для случайных процессов с нормальным законом распределения этих характеристик вполне достаточно, так как они позволяют определить математические ожидания, дисперсии и моменты распределения для любых случайных величин x ,. . ., процесса x(t) при любых ii,. .. , tn, а затем определить и л-мерную функцию распределения. Это большое преимущество нормальных случайных процессов используется всюду, где только возможно и даже там, где случайные процессы не нормальны, но приближенно могут рассматриваться как нормальные, Для линейных систем с постоянными параметрами преимущество корреляционной теории усиливается еще и тем обстоятельством, что при подаче на ее вход нормального случайного процесса выход системы имеет также нормальный закон распределения.  [c.29]

Шестая глава посвящена важнейшему разделу механики — гамильтонову формализму. Основная цель этого раздела — представить математические аспекты гамильтоновой динамики как мощный аппарат решения широкого круга задач механики, физики и прикладной математики. В лагранжевом подходе проблема решения уравнений лежит вне рамок лагранжева формализма. Положение меняется в гамильтоновом подходе, который позволяет получить решение как каноническое преобразование начальных данных, не обращаясь непосредственно к уравнениям. Вся информация об эволюции системы содержится в одной функции — гамильтониане в результате канонического преобразования можно получить новый гамильтониан, который в определенном смысле мал . Более того, поскольку все операции ограничены рамками группы движения кососимметричной метрики, то удается создать универсальные алгоритмы построения приближенных решений. В рамках гамильтонова подхода изложены теория специальных функций, каноническая теория возмущений, метод усреднения нелинейных систем, методы анализа движения системы в быстропеременном внешнем поле и т.д. Особый интерес представляет лекция 30, в которой развит метод Дирака удвоения переменных, позволяющий представить в гамильтоновой форме систему нелинейных уравнений общего вида и получить решения уравнений, описывающих сингулярно-возмущенные системы, решения алгебраических и трансцендентных уравнений, разрешить проблему обращения интегралов и т.д. В лекции 32 приведено решение задачи о движении релятивистской частицы в гиперболическом волноводе, представляющей интерес для проблемы сепарации частиц по энергии и удельному заряду. В рамках канонического формализма рассмотрена задача о движении протонов в синхрофазотроне.  [c.8]


В самом деле, если известно, например, что производная гпг отрицательна и что, следовательно, центр давления расположен за центром масс, то можно сделать вывод лишь о продольной статической устойчивости. Но нельзя сказать, например, какова будет амплитуда колебаний угла атаки при том или ином значении параметра начального возмущения и каким образом по времени будет происходить ее изменение. На все эти и другие вопросы отвечает теория динамической устойчивости летательного аппарата или устойчивости его движения. Эта теория позволяет, естественно, исследовать не только колебания летательного аппарата, но и общий случай движения аппарата на траектории и устойчивость этого движения. Теория динамической устойчивости использует результаты аэродинамических исследований, полученных на режимах неустановившегося обтекания, при котором на тело будут действовать в отличие от статических условий дополнительные аэродинамические нагрузки, зависящие от времени.  [c.37]

Предлагаемая читателю книга состоит из шести глав и приложения. В гл. 1 обсуждаются общие вопросы применения аппарата сопряженных уравнений и теории возмущений при расчетноэкспериментальных исследованиях инженерно-физических харак-  [c.5]

Довольно общий приближённый метод К. м.— возмущений теория, применимая в случаях, когда дополннт. взаимодействие, рассматриваемое как возмущение, может считаться малым. При этом постановка задачи различна для возмущений, зависящих и не зависящих от времени. В последнем случае с помощью аппарата т. н. стационарной теории возмущений обычно ищут сдвиги дискретных уровней энергии или их расщепления (когда имеется вырождение) и соответствующие волновые ф-ции. Для возмущений, зависящих от времени, обычно ставится задача определения вероятностей переходов между разл. состояниями системы под влиянием возмущения. Между состояниями, принадлежащими сплошному спектру энергии, подобного рода переходы могут возникать и под действием возмущений, не зависящих от времени. В обоих случаях используется т. в, нестационарная теория возмущений. Одним из распространённых применений этой теории к задачам рассеяния является борновское приближение.  [c.292]

Условия М. выполняют в аппарате квантовой теории поля многообразные ф-ции. В динамич. теории поля, основанной на полево.м лагранжиане гамильтониане , эти условия существенно ограничивают его структуру, приводя к необходимости локальности взаимодействия (отнесения операторов поля в лагранжиане к единой точке пространства-времени), отсутствия высших производных и т. п. Одновременно условия М. придают аппарату теории должную однозначность, фиксируя правила обхода особенностей амплитуд взаимодействия полей. В аксиоматической квантовой теории поля условия М. играют конструктивную роль одного из осн. постулатов, заменяющих в совокупности динамич. базис теории поля. Соответственно условия М. лежат в основе общего, не опирающегося на конкретные модели вывода акспоматнч. террии возмущений, аналитич. свойств амплитуд взаимодействий в комплексной плоскости энергетич. переменной, дисперсионных соотношений (см. также Дисперсионных соотношений метод), теоремы СРТ, Померанчука теоремы, Фруассара ограничения и др.  [c.138]

ДЛЯ решения всех типов астродинамических задач главным обра зом потому, что многие из них принадлежат к областям, в которы> теории общих возмущений пока не созданы. Одним из таких случаев является задача облета Луны точный расчет орбиты космического аппарата в поле системы Земля—Луна может быть выполнен только при помощи специальных возмущений. Большой недостаток метода состоит в том, что он редко приводит к каким-тс общим формулам кроме того, при таком подходе приходится рассчитывать про.межуточные положения тел, а цель работы часто состоит в определении их конечной конфигурации.  [c.130]


Смотреть страницы где упоминается термин Общий аппарат теории возмущений : [c.131]    [c.133]    [c.137]    [c.114]    [c.106]    [c.373]   
Смотреть главы в:

Общие принципы волновой механики  -> Общий аппарат теории возмущений



ПОИСК



Возмущение

Общие возмущения

Теория возмущений



© 2025 Mash-xxl.info Реклама на сайте