Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Воздействие аппаратов защиты

Узел защиты схемы типовой с воздействием аппаратов защиты на нулевое реле РВН.  [c.228]

После подготовки электропоезда и включения аппаратов защиты нажимают кнопку безопасности Кн2 (рис. 292) на главной рукоятке контроллера машиниста КМ, поворачивают реверсивную рукоятку в нужное положение, например Вперед, и устанавливают главную рукоятку в одно из ходовых положений. Силовая цель оказывается собранной. Контроль за порядком включения и исправностью проводов цепи управления электропневматическим тормозом осуществляется срывным клапаном СК, который при потере питания воздействует на ЭПК, приводя в действие пневматический тормоз. Вначале клапан СК минус питания получает от провода 43 через контакт К1 реверсивного вала контроллера КМ, который замкнут в положение 0. После нажатия на кнопку безопасности срабатывает реле контроля безопасности РКБ, катушка которого получает 342  [c.342]


Общие сведения. Детали корпусов являются основными несущими частями, на которых монтируют остальные детали, узлы и механизмы машин, приборов и аппаратов, используются для герметизации (сохранения смазочного материала, жидких, газообразных и твердых рабочих тел и др.) и защиты конструкций от внешних воздействий (механических, коррозионных, тепловых и др.).  [c.460]

Контрольные кабели предназначены для присоединения электрических приборов и аппаратов в электрических распределительных устройствах с переменным напряжением до 660 В частотой до 100 Гц или постоянным до 1000 В при температуре окружающей среды от —50 до +50 °С. Они могут прокладываться и на открытом воздухе при условии защиты их от механических повреждений и воздействия прямых солнечных лучей. Данные кабели изготовляются с однопроволочными медными и алюминиевыми жилами сечением 0,75—10 мм , число которых может составлять от 4 до 61.  [c.265]

Для защиты в комплексном многослойном покрытии железнодорожных цистерн, машин и аппаратов химических производств и металлоконструкций. подвергающихся воздействию кислых и щелочных сред  [c.43]

Защита аппаратуры от воздействия щелочных растворов при температуре до 100 0, мине рального масла при температуре 30—40 С, бензина, содержащего едкий натр, при pH 14—15 и температуре 5—25 ""С Для гуммирования крупногабаритных аппаратов, работающих в среде разбавленных растворов кислот, солей и щелочей при температуре от —30 до - 75 G  [c.94]

Основное функциональное назначение любого антикоррозионно, го покрытия — обеспечение защиты материала конструкции от непосредственного контакта с агрессивной средой, от кавитационных, эрозионных и абразивных воздействий. Защитное покрытие может выполнять также и антиадгезионную роль, препятствуя налипанию или отложению компонентов среды на стенках аппаратов и трубопроводов. Химическое оборудование с полимерным покрытием выполняет различные функции, которые так или иначе влияют на выбор критерия отказа. Так, например, предельное состояние емкостной, колонной и реакционной аппаратуры с покрытием должно отличаться от предельного состояния насосов, вакуум-фильтров, центрифуг и т. д. Во многих случаях необходимо устанавливать предельные состояния для отдельных элементов и узлов аппаратов и машин форсунок, оросителей, мешалок, колес центробежных насосов п т. д. Такой подход позволяет более рационально выбирать тип и конструкцию полимерного покрытия.  [c.44]


Ильинский В, С. Защита аппаратов от динамических воздействий.-М. Энергия, 1970,  [c.283]

Развитие мащиностроительной промышленности, появление новых видов транспорта, машин, приборов, аппаратов предъявляют все более высокие требования к качеству их отделки и защиты от коррозионного воздействия внешней среды.  [c.228]

Высокая степень чистоты внутренних поверхностей теплообменного аппарата необходима для защиты активной зоны реактора от загрязнения. В конструкции аппарата нужно применять только материалы, обладающие, помимо приемлемых прочностных свойств устойчивостью против коррозии при длительном воздействии теплоносителей и промывочных сред. После изготовления или ремонта все внутренние поверхности аппарата должны быть тщательно очищены от следов сварки, грязи и жиров, для чего производят механическую чистку, обезжиривание (дихлорэтаном или другим растворителем), промывку и сушку.  [c.41]

Аппараты не должны подвергаться воздействию посторонних источников тепла (отопительных агрегатов, термических печей, трубопроводов и пр.), а магнитные пускатели с тепловой защитой, кроме того, воздействию потоков холодного воздуха.  [c.992]

За 40 лет промышленного использования солнечные батареи доказали свою незаменимость, высокую надежность и долговечность при работе на космических аппаратах особенно после того, как удалось надежно защитить их от воздействия космической радиации. Для наиболее освоенного типа кремниевых ФЭП космического назначения достигнутые в эксплуатации значения КПД составляют около 15 %. Успешно работают солнечные батареи и на Земле.  [c.503]

Выбор лакокрасочного покрытия определяется условиями его эксплуатации. Д я защиты аппаратов от воздействия кислот, щелочей, растворителей и агрессивных газов готовят лакокрасочные покрытия на основе фенолоформальдегидных, полихлорвиниловых, эпоксидных и фторорганических полимеров.  [c.284]

Аппараты емкостного типа и реакционное оборудование, работающие при воздействии слабоагрессивных кислых и щелочных >сред, рекомендуется устанавливать на железобетонные ленточные фундаменты с защитой их нижней части на высоту до 300 мм облицовкой штучными материалами, а верхней части — полимерными покрытиями. Непроницаемый подслой пола должен быть заведен па вертикальную поверхность фундамента на высоту об-. лицовки.  [c.114]

А) Структурирование полимерных материалов под радиационным воздействием. В) Деструкция полимерных материалов под действием нагрева. С) Разрушение и унос материала под воздействием горячего газового потока. D) Способ защиты космических летательных аппаратов от перегрева при входе в верхние слои атмосферы.  [c.151]

Наука о коррозии металлов базируется, в основном, на двух смежных дисциплинах — металловедении и физической химии, и занимается установлением общих закономерностей разрушения структуры металла или сплава под влиянием воздействия внешней среды. Особенно большое значение в общем процессе развития современной техники имеет практическое направление науки о коррозии металлов — их защита, т. е. разработка новых сплавов повышенной коррозионной стойкости и более эффективных методов защиты металлических конструкций (машин, аппаратов, сооружений, средств транспорта и т. д.) от коррозионного разрушения в самых разнообразных условиях их эксплуатации.  [c.13]

Особенности аппаратуры для сварки неплавящимся электродом связаны с необходимостью иметь горелки для установки и закрепления неплавящегося стержня в нужном положении, для надежного подвода к нему сварочного тока, для осуществления его быстрой замены или возмещения расхода электрода, а также для обеспечения защиты разогретого электрода от воздействия воздуха. Горелка является наиболее важным узлом любого сварочного аппарата. Требования к конструкции сопл и характеру истечения газа при сварке неплавящимся электродом такие же, как и при сварке плавящимся электродом, однако отсутствие брызг позволяет широко применять керамические сопла. Полуавтоматы для сварки неплавящимся электродом применяют значительно реже, чем автоматы. Так, для сварки вольфрамовым электродом с присадочной проволокой имеются одна-две модели полуавтоматов [16, 19].  [c.78]


Указанные требования в большинстве случаев приемлемы и для других конструкций футеровок с использованием других видов штучных футеровочных материалов и вяжущих. Однако они могут иметь и свои специфические особенности. Так, для аппаратов, защита которых произведена штучными углеграфитовыми материалами на мазках на органической основе, возможно воздействие -резких температурных перепадов и попеременное воздействие кислых, нейтральных и щелочных сред. В то же время для футерованных аппаратов на битуминоле недопустимо повышение температуры, так как это может вызвать вытекание битуминоля и оползание футеровки.  [c.265]

Сосуды со стенками средней толщины (до 40 мм) пт-роко используются в нефтегазохимическом аппаратостроении как технологические аппараты различных производстенных назначений, а также как емкости для хранения и транспортирования жидкостей и сжиженных газов. Нередко требуется защита рабочей поверхности аппарата от коррозионного воздействия среды, сохранения прочности при высоких температурах, вязкости и пластичности материала несущих конструктивных элементов при низкой температуре. Поэтому используемые материалы весьма разнообразны углеродистые, жаропрочные и высоколегированные стали, медь, алюминий и их сплавы. Так как для обеспечения необходимого срока  [c.20]

На основе физической теории надежности создаются методы расчета надежности нефтехимических аппаратов, методы ускоренных испытаний, устанавливаются режимы защиты и упрочнения поверхностей аппаратов. Интеграция теории надежности с вышеназванными физико-техническими дисциплинами привела к появлению таких направлений в теории надежности, как прочностная надежность, трибологическая, коррозионная надежность. В этих направлениях решаются задачи расчета, испытаний и обеспечения надежности на основе методов теории прочности, фибологии и коррозии металлов, а также в условиях воздействия на изделия соответственно механических нагрузок, агрессивных сред, трения и изнашивания.  [c.71]

В целях повышения надежности и безопасности оборудования и трубопроводов ОГПЗ была проведена оценка возможности попадания сероводородсодержащих сред в аппараты и коммуникации в коррозионно нестойком исполнении. Объекты, на которых возможен контакт сероводородсодержащих сред с коррозионно нестойкими материалами, подвергли неразрушающему ультразвуковому контролю или заменили материалы на коррозионностойкие. Неэксплуатировавшиеся аппараты и трубопроводы законсервировали, обеспечив их надежную защиту от воздействия сероводород содержащих сред.  [c.50]

При изготовлении тонкостенных оболочковых конструкций для химического аппаратостроения в целях защиты их поверхности от воздействия агрессивной среды и сохранения прочности и пластичности металла при низкой температуре используют самые разнообразные материалы (биметаллы, цветные металлы и сплавы, среднелегированные стали и др ) В связи с этим технология сварки таких конструкции достаточно сложна, нередко требует сочетания различных способов, специальных присадков, дополнительных мероприятий по предотвращению трещинообразования, защите сварочной ванны от окисления и т.д Для операций сборки и сварки цилиндрической части сосудов обычно применяют роликовые стенды, оборуд>я их paзличны и приспособлениями флюсовыми подушками, стяжными скобами, автоматическими головками для сварки, распорками, центраторами и др Сварку обечайки с днищем производят стыковыми швами за один или несколько проходов В стенки сосудов и аппаратов приходится вваривать патрубки, лючки, штуцера и другие элементы, сварные соединения которых часто являются инициаторами разрушения конструкции На рис 19 приведены в качестве примера некоторые варианты конструктивного оформления шт церов в аппаратах химического производства. Варианты с дополнительно усиливающими кольцами (см. рис 1 9,й) и утолщенными патрубками (см рис 19,6) выполняются угловыми швами, в зонах которых возникает значительная концентрация напряжений В данном месте часто появляются усталостные трещины Более предпочтительными с точки зрения повышения работоспособности являются варианты соединений с вытяжкой горловины (см рис.  [c.18]

Таким образом, цветовые и оптпческне ощущения человека не всегда соответствуют способностям тела отражать, поглощать или пропускать тепловое излучение. Для поглощения и отражения тепловых лучей решающую роль играет шероховатость поверхности чем она больше, тем больи1е энергии поглощает и излучает поверхность. Пример со снегом свидетельствует о том, что для защиты аппаратов от воздействия теплового излучения их поверхность должна быть не только белой, но и очень гладкой.  [c.218]

Поверхность адсорбирует пыль, газы и другие вещества, образующиеся в результате протекающих в ходе эксплуатации изоляции физико-химических процессов в окружающей диэлектрик среде. Сильно загрязняется поверхность электроизоляционных конструкций (высоковольтных вводов, изоляторов и др.), работающих в загрязненной атмосфере промышленных и приморских районов. Образовавшийся на поверхности слой загрязнений имеет здесь такое небольшое электрическое сопротивление, что значение поверхностного тока утечки достаточно для нагрева поверхности до температур, больших 373 К (100 °С). При таком нагреве происходит вскипание воды на поверхности. Если этот процесс происходит в условиях увлажнения дождем, то перепады температур приводят к образованию микротрещин и механическому разрушению приповерхностного слоя изоляции. Не исключена и возможность воздействия различных агрессивных продуктов на приборы радиоэлектроники и автоматики при их использовании для регулирования работы электрических машин и аппаратов в устройствах энергетики, наземного, воздушного и водного транспорта. Поэтому в конструкциях приборов предусматриваются герметизация узлов с развитой поверхностью электроизоляционных промежутков, защита их поверхности специальными несмачиваемыми, незагрязняющими герметиками. Настройка и ремонт приборов, требующие разгерметизации, должны выполняться при условии, когда исключено всякое загрязнение и увлажнение электроизоляционных деталей. Элек-трокерамические электроизоляционные конструкции покрываются специальными грязестойкими глазурями, широко используется защита их поверхности гидрофобными кремыийорганическими лаками и герметиками. Покрытие из кремнийорганических соединений применяют для защиты поверхности электроизоляционных конструкций, изготовленных из стекла.  [c.148]


Разработанные составы полимерных бегонов могут найти применение в конструкцияхработающих в условиях воздействия агрессивных сред, а также для защиты химического оборудования и аппаратов.  [c.90]

Кислотоупорный кварцевый кремиефтори стый цемент Кислотоупорный цемент без NajSiFfl Для изготовления башен, резервуаров, ванн и других химических аппаратов, для химической защиты аппаратуры от воздействия минеральных и органических кислот, кислотостойких замазок, покрасок, кислотоупорных растворов п бетонов Для связки кислотоупорных кирпичей. кислотоупорных замазок Кислотоупорность, огнеупорность, клеящая способность То же  [c.510]

Наиболее совершенные аппараты для рентгеновского просвечивания выпускаются заводами Вестингауз (фиг. 2), Келекет и Митчелл (США). Эти аппараты работают при напряжениях до 250 кв и по основным рабочим параметрам соответствуют нашим РУП, но сконструированы с расчетом на максимальное удобство установки и управления. Хорошо продумана система защиты оператора от высокого напряжения и от воздействия рентгеновских лучей, что значительно упрощает требования к помещению, в котором аппарат работает.  [c.334]

Защита стальных конструкций и оборудования, предварительно загрунтованных и покрытых в несколько слоев. Покрытия обладают стойкостью к воздействию агрессивных газов, растворов солей и кислот при температуре не выше 60 °С Защита в комплексном многослойном покрытии поверхностей машин, аппаратов, трубопроводов и металлоконструкций, подвергающихся воздействию агрессивных сред кислых и щелочных в промышленной атмосфере Защита оборудЬвания и металлоконструкций, эксплуатируемых в щелочной среде до 60 °С  [c.328]

Обычно при разработке ингибиторов или при их иприменении в кислых средах (травление, перевозка кислот, защита хи.мической аппаратуры и т. п.) учитывают лишь потерю массы. металла вследствие развития процессов общей равномерной коррозии. Однако практика показывает, что такая оценка явно недостаточна, так как в большинстве случаев оборудование, механизмы, аппараты работают не только в. условиях воздействия агрессивных кислых сред, но и под влиянием различного рода механических напряжений. Механические напряжения Могут усиливать равномерную коррозию металла в кислой среде, а также приводить к локальным коррозионным поражениям, скорость которых в десятки Тысячи раз выше скорости равномерной коррозии. Совместное действие среды Механического фактора вызывает коррозионно-механическое разрушение, которое выражается в усилении общей коррозии, возникновении коррозионного растрескивания 11 коррозионной усталости.  [c.61]

Электризация трением диэлектрических поверхностей вызывается образующимся при трении зарядом в результате соприкосновения с частичками при полете, трения различных материалов Друг о друга или отделения двух материалов один от другого. Появление статического заряда при пылеосаждении может быть и просто неприятным, и опасным. Топливные баки, вооружение и электрическое оборудование должны быть изолированы от воздействия статического электричества. Способы защиты изделий (аппаратов) от ударов молнии иногда могут преследовать две цели служить защитой и от молний, и от накопления статического Заряда. Их действие сводится к тому, чтобы обеспечить отвод Статического заряда до его накопления в количествах достаточно больших, чтобы вызвать воспламенение или взрыв или создать электромагнитные помехи на находящемся на борту электрическом оборудовании.  [c.291]

Насадка для колонных аппаратов (кольца Ращига) футеровочные штучные изделия (кирпич, плитка) для антикоррозионной защиты емкостной аппаратуры из углеродистой стали и других конструкционных материалов от воздействия афессивных сред  [c.60]

Этот электрод сравнения можно использовать в аппаратах, работающих под давлением до 10 МПа и при температуре 100 °С (рис. 5.11). Электрод сравнения 10 представляет собой сурьмяный стержень, размещенный в пробке 6 из фторопласта-4. Электровывод осуществляется по медной многожильной проволоке 4, которая припаяна к сурьмяному стержню и соединена с контактом 7, размещенным на пробке 2 из стеклотекстолита. Все перечисленные элементы заключены в корпус электрода сравнения 5, изготовленный из стали 12Х18Н10Т. Полость 9 корпуса электрода сравнения заполнена эпоксидным компаундом. Для увеличения поверхности сцепления эпоксидного компаунда с корпусом в полости имеется резьба. Корпус электрода сравнения ввинчен в стакан 3, изготовленный из стали 12Х18Н10Т. Стакан приварен к стенке исследуемого аппарата или трубопровода. Для уплотнения зазора между корпусом электрода сравнения и стаканом служит фторопластовая шайба 8. Узел электрода сравнения снабжен кожухом 1 для защиты от атмосферных и механических воздействий. Такая конструкция электрода сравнения позволяет устанавливать дополнительный платиновый электрод для измерения окислительно-восстановительного потенциала раствора. Оксидно-сурьмяный электрод сравнения прошел лабораторные испытания гидравлическим давлением 15 МПа в течение 2500 ч. Такие электроды установлены на оборудовании МЭА-очистки аммиачного производства.  [c.103]

Защита реакционной и емкостной аппаратуры, эксплуатируемой при воздействии сильноагрессивных сред, исключая среды с фторсодержащими примесями. Защита шлакоситалловыми плитками на эпоксидных полимер-замазках сооружений и химических аппаратов, эксплуатирующихся в условиях воздействия циансодержащих сред  [c.170]

Наиболее распространенная схема защиты химических аппаратов, газоходов и сооружений — одно- или двухслойная футеровка штучными кислотоупорными материалами (кирпичом, фасонными изделиями, керамической, диабазовой или шлакоситал-ловой плиткой) на силикатных замазках. Футеровочные покрытия на основе силикатной замазки обеспечивают защиту оборудования от воздействия минеральных кислот (кроме фтористоводородной), растворов их солей, агрессивных газов и большинства органических кислот. К недостаткам покрытий на силикатной замазке относятся высокая пористость и проницаемость (особенно для кислот низких концентраций), низкая водостойкость и отсутствие стойкости к щелочам.  [c.176]


Смотреть страницы где упоминается термин Воздействие аппаратов защиты : [c.83]    [c.274]    [c.125]    [c.129]    [c.286]    [c.188]    [c.103]    [c.489]    [c.82]    [c.9]    [c.477]    [c.38]    [c.16]   
Смотреть главы в:

Электропоезда серий ЭД9М, ЭД9Т, ЭР9П  -> Воздействие аппаратов защиты



ПОИСК



Воздействие аппаратов защиты на силовую схему



© 2025 Mash-xxl.info Реклама на сайте