Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Расчет цилиндрической оболочки на осесимметричную нагрузку

На базе уточненных уравнений теории оболочек типа Тимошенко исследовано напряженное состояние в двухслойной цилиндрической оболочке, находящейся под действием внешней осесимметричной нагрузки, носящей локальный характер. Произведен численный расчет контактных (межслойных) касательных и нормальных напряжений для различных соотношений толщин слоев. Результаты представлены в виде графиков.  [c.389]


Деформации деталей типа стаканов. Пофешности возникают при установке подшипников и воздействии на стаканы силовой нагрузки в соответствии со схемой на рис. 91. Расчет производят по теории осесимметричной деформации тонкостенных цилиндрических оболочек с использованием гипотезы неизменности нормали и гипотезы об отсутствии взаимного надавливания слоев оболочки. Осевую силу Р считают равномерно распределенной по кольцевой площади опорного бурта В.  [c.849]

В данной работе описан алгоритм расчета конструктивно-ортотропных оболочек вращения с произвольной формой меридиана и произвольным законом изменения жесткости оболочки вдоль меридиана. Оболочки такого типа широко используются в различных конструкциях. Трудности разработки универсального алгоритма расчета, по-видимому, явились причиной того, что большинство работ посвящено решению частных задач [10]. Сравнительно недавно был предложен достаточно гибкий алгоритм расчета, основанный ка замене исходной оболочки системой конических и цилиндрических оболочек, для которых строится точное решение задачи сопряжения [1, 4]. При этом на закон изменения жесткости оболочки накладывается ряд ограничений. При действии на оболочку осесимметричной нагрузки эффективным оказался прием расчленения оболочки на систему криволинейных стержней, лежащих на упругих опорах и упругом основании Винклеровского типа [5, 9].  [c.96]

Разработка всех этих вопросов имеет длительную историю. Так, например И. Я. Штаерман (1924) указал на целесообразность раздельного определения основного (безмоментного) напряженного состояния и краевых эффектов в оболочках вращения при осесимметричной нагрузке еще более сорока лет тому назад. В начале тридцатых годов произошло бурное развитие методов расчета цилиндрических оболочек, в основном благодаря успешным исследованиям В. 3. Власова (1933, 1936), приведшим к варианту расчета (получившему в наше время название полубезмомент-ной теории — по терминологии В. В. Новожилова, 1951), описывающему обобщенные краевые эффекты около асимптотического края. Позже в работах А. Л. Гольденвейзера (1947, 1953) были даны обобщения упрощенного расчета краевых эффектов в статике оболочек нулевой гауссовой кривизны произвольного очертания и отрицательной гауссовой кривизны около асимптотического края. Результаты этих исследований показали, что для недлинных оболочек полученные соотношения представляют собой частные случаи так называемой технической моментной теории оболочек (по терминологии В. 3. Власова, 1944), предназначенной для расчета напряженных состояний с большим показателем изменяемости. В тензорной записи разрешающее уравнение этой теории имеет в смешанной форме следующее представление  [c.237]


Для приближенного расчета толстостенных цилиндров при осесимметричной нагрузке иногда применяют теорию тонкостенных цилиндрических оболочек. Обычно это приводит к значительно большим погрешностям, чем при использовании рассмотренного выше приближенного метода. Однако, если при расчете по теории тонкостенных цилиндрических оболочек соблюдать определенные правила, то точность расчета можно существенно повысить. Прежде всего все нагрузки, приложенные к наружной или внутренней поверхности цилиндра, необходимо привесии к его срединной поверхности. Так, н-апример, если на цилиндр действуют внутреннее давление р и наружное давление рг, то в расчетные зависимости надо подставлять приведенное давление  [c.91]

Распределение усилия S°(ф) взаимодействия оболочки и кольца определяется из условия совместности их деформаций на линии контакта окружные перемещения оболочки v а=а. и кольца должны быть одинаковыми. Заметим, что попытка рассчитать цилиндрическую оболочку при граничных условиях (7.41), как безмоментную, привела бы к выводу, что эта оболочка вовсе не принимает участия в восприятии нагрузки. В самом деле, из условий = О при а = О, а = следовало бы, что везде 7 = Q [см. формулы (6.41)], а также 5 = onst, что соответствует только осесимметричному кручению оболочки. Но так как нагрузки Р не вызывают кручения, то 5 = 0. Таким образом, напряженное состояние оболочки близко к чисто мо-ментному. Поэтому при малой длине оболочки для ее расчета наряду с полубезмоментной теорией можно было бы использовать и теорию чистого изгибания.  [c.327]

В табл. 9.20—9.22 даны некоторые формулы, необходимые для расчета на прочность и жесткость элементов теплотехнических конструкций, схематизируемых упругодеформирую-щимися пластинами и цилиндрическими оболочками, расчетные схемы для которых представлены в таблицах. Рассматриваются круговые и кольцевые пластины, опертые или защемленные по контурам и загруженные равномерно распределенными по срединной поверхности нормальными нагрузками (р, МПа), распределенными по контуру осесимметричными поперечными нагрузками (q, Н/м) или сосредоточенными силами Р, приложенными в центре пластины. Рассматриваются осесимметрично нагруженные длинные цилиндрические оболочки, т. е. оболочки, длина которых  [c.372]

Глава 4 посвящена изучению аналитическими и численными методами локальной термоустойчивости ортотропных цилиндрических и сферических оболочек. В ней также рассмотрено аналитическое определение перемещений и напряжений в ортотропных оболочках вращения, испытывающих осесимметричный нагрев, влияние термоциклирования на предельные нагрузки при внешнем давлении на примере углеродных оболочек и представлен алгоритм расчета теплофизических характеристик многослойных КМ.  [c.8]

В задаче устойчивости круговой замкнутой цилиндрической оболочки в условиях ползучести при действии продольной сжимающей нагрузки для расчета критического времени необходимо задать некоторый начальный прогиб. В работах Френча и Пателя, Самуэлсона, Хоффа [240] задается осесимметричный периодический по длине оболочки начальный прогиб. В течение всего процесса ползучести в возмущенном движении оболочка остается осесимметричной, й критическое время (в геометрически линейной постановке) определяется обращением прогиба в бесконечность. В уравнениях, описы-вгиощих ползучесть, Хофф в работе [240], как и в большинстве своих работ, не учитывал упругих деформаций. Зависимость критического времени от амплитуды нач-ального прогиба для двухслойной модели оболочки, как и в задачах выпучивания стержней, носит логарифмический характер, В работах последнего времени [242] Хофф предложил учитывать влияние упругой деформации на критическое время с помощью приближенной формулы  [c.276]

В заключении второй части книги рассматриваются малые прогибы тонких упругих оболочек, излагается линеаризированная теория устойчивости оболочек. Приведенные здесь общие уравнения устойчивости цилиндрических оболочек в перемещениях, вызванных потерей устойчивости, известны как уравнения Тимошенко. Дается решение этих уравнений для случая внешнего поперечного давления и равномерного продольного сжатия. Последний случай особенно интересен. Автором впервые изучена теоретически неосесимметрвганая форма потери устойчивости и показано, что в этом случае при выпучивании по коротким продольным волнам выражение для продольной критической нагрузки совпадает с формулой для критической нагрузки при симметричном волнообразовании. Здесь описан также метод расчета на устойчивость оболочек за пределом упругости. Наконец, излагается общее решение уравнений малых осесимметричных деформаций сферической оболочки и их щ)имвнение к различным случаям нагружения.  [c.7]


Влияние трехмерности задачи на нелинейные волны напряжений выявляется путем сопоставления их с осесимметричными волнами. Результаты решения осесимметричных задач приводятся в настоящем параграфе- Изучается влияние физической и геометрической нелинейности, ортотропии и вязкости материала на напряженно-деформиро-ванное состояние (НДС), возникающее в области стыка цилиндрической и конической частей оболочки вращения. Нагрузка длительностью 4 10 с прикладывалась по всей внешней поверхности оболочки. Эпюра ее изменения по t имела вид равнобедренного треугольника, амплитуда в расчетах менялась. Внешний радиус цилиндра равнялся 0,5 м, внутренний — 0,472 м. Внутренняя поверхность конуса переходила во внутреннюю поверхность цилиндра, внешняя поверхность соединялась с цилиндром в точках поверхности г = 0,486 м. Образующие конуса и цилиндра составляли угол 30" . Конечно-разност-ная сетка в исходном состоянии была равномерной. Ее образовывали линии, параллельные оси г и боковым поверхностям оболочки. Размеры ячеек выбирали так, что волна напряжений, идущая от нагружаемой поверхности, укладывалась на 20 шагах вдоль радиальной координаты, величина шага вдоль образующей в 1,5—2,5 раз превышала величину шага по г. При такой ячейке уменьшение шагов сетки в два  [c.237]


Смотреть страницы где упоминается термин Расчет цилиндрической оболочки на осесимметричную нагрузку : [c.220]    [c.255]    [c.161]    [c.216]   
Смотреть главы в:

Прикладные методы расчета оболочек и тонкостенных конструкций  -> Расчет цилиндрической оболочки на осесимметричную нагрузку



ПОИСК



528—530 — Расчеты цилиндрические

529 — Расчет цилиндрические — Расчет

Нагрузки Расчет

Оболочка Расчет

Оболочка цилиндрическая

Оболочки цилиндрические — Расчет

Расчет на жесткость оболочек большой гибкости (канд. техн. наук Л. Е. Андре РАСЧЕТ ЦИЛИНДРИЧЕСКИХ ДЕТАЛЕЙ, НАХОДЯЩИХСЯ ПОД ДЕЙСТВИЕМ ОСЕСИММЕТРИЧНОЙ НАГРУЗКИ (канд. техн. наук Бояршинов)

Расчет на жесткость оболочек большой гибкости (канд. техн. наук Л. Е. АндреРАСЧЕТ ЦИЛИНДРИЧЕСКИХ ДЕТАЛЕЙ, НАХОДЯЩИХСЯ ПОД ДЕЙСТВИЕМ ОСЕСИММЕТРИЧНОЙ НАГРУЗКИ (канд. техн. наук Бояршинов)



© 2025 Mash-xxl.info Реклама на сайте