Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тепловые процессы при точечной сварке

Основной технологический вариант точечной сварки — одноимпульсная сварка с постоянным давлением (табл. 6, п. 1), при котором после зажатия деталей усилием Р (не изменяемым в процессе сварки) включается ток в виде одного импульса длительностью св и происходит местный нагрев теплотой, выделяемой в контакте между деталями и в самих деталях. Плотность тока в центральном столбике металла диаметром с , (фиг. 10) обычно наибольшая он нагревается наиболее интенсивно. Особенно быстро нагреваются слои металла, прилегающие к контакту, сонротивление которого под действием силы Р быстро снижается почти до О (фиг. И, а—в) одпако тепло в близких к контакту слоях продолжает и после этого выделяться более интенсивно вследствие высокого удельного сопротивления ранее нагретого металла (контактное сопротивление создает концентратор теплоты). Нагрев центрального столбика сопровождается отводом теплоты в окружающий металл и в электроды. В результате наиболее интенсивно нагревается заштрихованное на фиг. 10 ядро точки. (Тепловые процессы при точечной сварке см. т. I, гл. II). Вначале здесь образуются общие зерна, начинается сварка в пластическом состоянии. При дальнейшем нагреве ядро точки расплавляется, образуя после охлаждения прочное соединение. Жидкий металл в ядре удерживается от вытекания (выплеска) кольцом пластичного металла диаметром к, сжатым силой Р.  [c.285]


Тепловые процессы при точечной сварке  [c.506]

Изучение тепловых процессов при точечной сварке обычно ставит своей задачей определение необходимого количества тепла в калориях  [c.43]

Проблема свариваемости базируется в большей мере на теории тепловых процессов при сварке. В СССР разработаны и развиваются методы определения теплового состояния при сварке плоскостными, линейными и точечными источниками тепла элементов малых, больших и средних толщин при различных скоростях их перемещений по изделиям из сталей, а также из сплавов с различными физико-металлургическими свойствами. Разработана также теория тепловых полей при сосредоточенных и распределенных источниках нагревов в форме газового пламени и плазм, а также при электроконтактной стыковой и точечной сварке.  [c.131]

ТЕПЛОВЫЕ ПРОЦЕССЫ ПРИ ИМПУЛЬСНОЙ ТОЧЕЧНОЙ СВАРКЕ  [c.142]

В ядре сварной точки допускаются единичные поры, раковины и даже трещины, если их размер не превышает V3—V4 высоты ядра. Такого рода дефекты не оказывают влияния не только на статическую, но и вибрационную прочность. Это объясняется тем, что прочность сварной точки главным образом зависит от концентрации напряжений, типовая эпюра которых показана на нижней части рис. 96. Круговой концентратор К, который проходит по зоне термического влияния (если она есть) или по границе расплавления, и представляет собой самое опасное сечение сварного соединения. Следовательно, поскольку неустраним сам концентратор К, то, видимо, все внимание технолога должно сосредоточиваться на том слое металла, в котором расположен концентратор К-Таким образом, первая задача технолога —это получить хорошо сформированное расплавленное ядро определенных размеров. Вторая, более сложная задача — обеспечить в зоне концентратора К такую структуру металла, которая в наибольшей мере оказалась бы способной выдерживать концентрации напряжений без образования надрывов и трещин. Если иметь в виду, что при точечной сварке металл в зоне сварного соединения подвергается одновременно тепловому и механическому воздействию, то вполне рационально рассматривать точечную сварку как термомеханический процесс обработки металла. Но и это еще не все, что отличает точечную сварку от классической схемы термической обработки только в координатах температура — время. Через жидкую фазу ядра и горячую зону термического влияния проходят токи огромной плотности. Во многих случаях практики эти токи униполярны. Нельзя поэтому упускать из вида возможность влияния электрического тока — вначале на химическую однородность металла, а затем в конечном итоге и на структуру не только ядра, но и границы плавления.  [c.196]


Схема кристаллизации сварных швов. Рост кристаллитов в сварном шве происходит нормально к фронту кристаллизации, т. е. к изотермической поверхности кристаллизации (ИПК), соответствующей Гпл. Поскольку при сварке сварочная ванна перемещается, то ось растущего кристаллита является ортогональной траекторией к семейству ИПК, смещенных по оси шва. Определенные трудности заключаются в математическом описании ИПК методами теории тепловых процессов при сварке. Для инженерных решений ИПК аппроксимируют уравнением эллипсоида с полуосями L, Р, Н, которые соответствуют длине затвердевающей задней части сварочной ванны, половине ее ширины и глубине проплавления [1]. В зависимости от схемы нагреваемого тела и типа источника теплоты ИПК может быть эллипсоидом с двумя равными полуосями (точечный источник на поверхности полубесконечного тела, Р = Я), эллиптической цилиндрической поверхностью (линейный источник по толщине листа, Н = 6) или частью фиктивного эллипсоида (точечный источник на поверхности плоского слоя, р<Р и hпроцесс кристаллизации и оси кристаллитов являются Пространственными кривыми. При этом поскольку поперечное сечение сварочной ванны является кругом (P = Я = L), то форма осей всех кристаллитов аналогична форме кристаллитов на ее  [c.100]

Наиболее оптимальным из серии бесконтактных методов является оптический метод измерения с помощью катетометра. К образцу в средней его части точечной сваркой приваривают метки из платиновой проволоки диаметром 20—25 мкм на расстоянии 1—2 мм одна от другой. Поле измерений составляет 8—10 мм (чтобы была охвачена зона с максимальными температурой и деформацией). Перед измерением образец подвергают термоциклированию в свободном состоянии для стабилизации теплового режима с последующим измерением термической деформации на каждом участке принятой базы. Затем образец закрепляют и подвергают действию циклических термических нагрузок до 10 циклов для стабилизации процесса циклического деформирования. При минимальной температуре цикла измеряют расстояние между метками. Второй замер производят при максимальной температуре по тем же меткам. Таким образом определяют участок образца с наибольшей деформацией за цикл. В дальнейших двух-трех циклах измерения повторяют только на этом участке.  [c.31]

Источники, тепловой поток которых и его распределение. изменяются в течение процесса сварки. В качестве примеров таких источников можно привести источники при сварке стержней сопротивлением или оплавлением, точечной сварке, сварке трением и др.  [c.395]

В большинстве работ, посвященных ультразвуковой сварке [12, 19, 31, 37, 41, 47, 57 и т. д.], исследовались тепловые процессы. Кроме экспериментальных исследований с помощью точечных термопар, размещаемых в различных участках зоны соединения и зоны сварки, а также естественных термопар, образованных свариваемыми деталями, производились расчеты температур Т. Результаты этих расчетов, основанных на гипотезе сухого трения в зоне соединения и в контакте наконечник—деталь, обычно не совпадают с данными экспериментов. Удовлетворительное совпадение расчетных и экспериментальных результатов отмечено только в работах [31, 57]. В работе [57], в которой использовалась массивная опора, расчет температуры в зоне сварки производился при следующих допущениях суммарный тепловой поток от источников постоянный, т. е. их производительность постоянна, а нижняя деталь вместе с опорой образует полубесконечное тело источник тепла считался распределенным но кругу. Такая задача решена в работе [122].  [c.121]

СОСРЕДОТОЧЕННЫЙ ИСТОЧНИК ТЕПЛОТЫ — расчетная схема источника теплоты, применяемая в численных методах математического описания процессов распространения теплоты при сварке, происходящих в области, удаленной от источника. В соответствии с этой схемой удельный тепловой поток источника принимают сосредоточенным в точке (точечный), в отрезке линии (линейный) или в плоскости (плоский источник теплоты).  [c.151]


В процессе точечной и шовной сварки при нагреве и расплавлении металл, находящийся между электродами, увеличивается в объеме и перемещает подвижный электрод (ползун привода усилия) сварочной машины относительно корпуса привода усилия. Величина этого перемещения зависит от размеров получаемой литой зоны соединения. При определенных требованиях к конструкции сварочной машины и режимам сварки контроль по тепловому расширению металла может быть применен для деталей толщиной 1 мм и более.  [c.119]

При диагностировании на стадии проектирования станочных систем большое внимание уделяется точностной надежности, которая во многих случаях ограничивает ресурс машины. При этом исследуются не только динамические нагрузки, но и тепловые деформации, а также процессы резания и стружкообразования [3]. Для этого применяются системы не только функционального, но и тестового диагностирования [2], в том числе по виброакустическйм показателям. При создании технологического оборудования с небольшим удельным весом времени выполнения технологических операций точечной сварки, штамповки, упаковки и др. - большое внимание уделяется отработке. механизмов холостых ходов, которые определяют надежность оборудования [7]. Здесь наиболее широко используются методы расчета механизмов, разработанные в механике машин, и одновременно регистрируются при стендовых испытаниях большое число кинематических, динамических и точностных параметров.  [c.196]

Опыт создания жидкометаллических труб описывается также в работах других авторов. Винцем с соавторами [4-7] описан интересный способ создания жестких тонкостенных тепловых труб с фитилями. В предыдущих работах, в которых использовались сетчатые фитили,соединение фитиля с корпусом осуществлялось точечной сваркой, вдавливанием в стенку при протяжке пуансона, а также вдавливанием с последующим спеканием. Первый способ не обеспечивает равномерного соединения фитиля со стенкой методы, связанные с протяжкой, не могут быть применены для очень тонких сеток (тоньше 200—400 меш) из-за их повреждения в процессе протяжки. Метод Винца состоит в спиральной навивке проволочной ленты на оправку и спекании ее после установки в корпус ввинчиванием , т. е. протяжкой с одновременным вращением. Металлическая ткань 508Х ХЗбОО меш была успешно применена для изготовления фитиля с хорошо воспроизводимым диаметром пор в 10 мкм 10% доля свободной для испарения поверхности составила 15—20%.  [c.143]

Основные положения технологического процесса сварки. При сварке стержней арматуры из закаливающихся сталей Ст. 5, 25Г2С и 35ГС в первую очередь приходится учитывать свойства основного металла свариваемых элементов и условия работы конструкции. Прежде всего принимается во внимание повыщенная склонность этих сталей к воздушной подкалке. Резкое тепловое воздействие, оказываемое на основной металл в процессе дуговой сварки при наплавке валика на поверхность стержня, а также при его точечном поджоге или подплавлении, может вызвать его хрупкое разрущение. Склонность к хрупкому разрущению может быть свойственна и сварным швам. Это наблюдается при использовании прахбатон  [c.73]

В настоящее время лазерное из.чучеппе широко применяется для обработки металлов в промышленности. Это такие процессы, как сварка (шовная и точечная), термообработка поверхности, удаление материала, пробивка отверстий, резка [И, 12]. Что касается резки, этот процесс нашел применение и при раскрое синтетических тканей и плепок. Наконец, тепловое воздействие лазерпого излучения широко используется в электронике и микроллсктронике [И, 12].  [c.243]

У разных по составу и назначению высоколегированных хромоникелевых сталей указанные процессы в ЗТВ могут развиваться по-разному, но их развитие, как правило, может оказывать отрицательное влияние на свойства и работоспособность сварных соединений, если эти процессы будут активными. Поэтому, хотя рас-смаи риваемые стали свариваются всеми видаами сварки, предпочитать следует такие, при которых тепловое воздействие на свариваемый металл будет наи.меньшим — в среде защитного инертного газа тонкой проволокой, электронно-лучевую и различные способы сварки давлением (шовная, точечная, диффузионная и др.).  [c.277]


Смотреть страницы где упоминается термин Тепловые процессы при точечной сварке : [c.285]    [c.379]    [c.147]    [c.161]    [c.171]   
Смотреть главы в:

Теоретические основы сварки  -> Тепловые процессы при точечной сварке



ПОИСК



Процесс сварки

Процесс тепловые

Сварка тепловые процессы

Сварка точечная

Тепловые процессы при импульсной точечной сварке

Тепловые процессы при нормальной точечной сварке



© 2025 Mash-xxl.info Реклама на сайте