Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства соединений германия

Свойства соединений германия  [c.377]

Чтобы получить вероятную конфигурацию кислородных комплексов на поверхностях с низкими индексами (100), (110), (111), необходимо рассмотреть физические и химические свойства соединений германия с кислородом и учесть, что комплексы должны быть встроены в кристаллическую решетку. В табл. 3.3 представлены наиболее вероятные комплексы комплексы с переносом заряда не учитывались (см. обсуждение в 5).  [c.162]


Разница между полупроводниками и изоляторами чисто количественная и определяется величиной энергетической щели ), отделяющей заполненную зону от незаполненной. В полупроводниках эта щель достаточно мала (порядка электронвольта) и они в обычных условиях становятся сравнительно хорошими проводниками. Таким свойством обладают германий и кремний и различные соединения элементов третьей и пятой групп, такие, как антимонид индия и арсенид галлия. В изоляторах щель достаточно велика (несколько электронвольт) и они не проводят ток. Сюда относятся многие ионные соединения, такие, как хлористый натрий.  [c.157]

Аморфные твердые тела с тетраэдрическими связями, такие, как кремний, германий, соединения А В . Эти полупроводники в аморфном состоянии нельзя получить путем охлаждения расплава. Их получают, обычно, в виде тонких пленок с помощью различных методов осаждения (термическое испарение в вакууме, катодное напыление и т. д.). Их свойства в значительной степени подобны свойствам кристаллических аналогов.  [c.360]

Технические полупроводники могут быть разбиты на четыре группы 1) кристаллы с атомной решеткой (графит, кремний, германий) и с молекулярной решеткой (селен, теллур, сурьма, мышьяк, фосфор) 2) различные окислы меди, цинка, кадмия, титана, молибдена, вольфрама, никеля и др. 3) сульфиды (сернистые соединения), селениды (соединения с селеном), теллуриды (соединения с теллуром) свинца, меди, кадмия и др. 4) химические соединения некоторых элементов третьей группы периодической таблицы элементов (алюминий, галий, индий) с элементами пятой группы (фосфор, сурьма, мышьяк) и др. К числу полупроводников относятся некоторые органические материалы, в частности полимеры, имеющие соответствующую полупроводникам по ширине запрещенную энергетическую зону. Особенности свойств некоторых органических полупроводников, как гибкость, возможность получения пленок при достаточно большой механической прочности, заставляют считать их перспективными.  [c.276]

Изложены результаты исследования термодинамических свойств неорганических материалов — энергии Гиббса, энтальпии и энтропии образования соединении ванадия, хрома и марганца с р-элементами и закономерности их изменения в связи с положением компонентов в периодической системе элементов. Обобщены данные экспериментальных исследований и закономерности фазовых равновесий и строения диаграмм состояния в рядах систем редкоземельных металлов с германием титана и циркония в бинарных и тройных системах с тугоплавкими платиновыми металлами, тройных систем переходных металлов, в которых образуются фазы Лавеса, и тройных систем переходных металлов, содержащих тугоплавкие карбиды. Приводятся примеры использования полученных результатов при разработке новых материалов.  [c.247]


Метод эпитаксии позволяет создавать высокоомные (более чистые) пленки кремния и германия, исключает трудную технологическую операцию разрезки монокристаллов на тонкие пластины дает возможность получать сложные полупроводниковые материалы (например, карбид кремния), производство которых в виде объемных монокристаллов затруднено вследствие высокой стоимости процесса. Последнее обусловлено либо низкой производительностью, либо высокой температурой плавления и химической активностью компонентов, либо летучестью одного из компонентов соединения Применение тонких пленок толщиной 15 - 20 мкм улучшает параметры прибора. Излишняя толщина пластин ухудшает частотные свойства приборов из-за роста потерь. При резке объемных монокристаллов нельзя получить пластины тоньше, чем 100 -200 мкм.  [c.594]

Полупроводниковые кристаллические соединения типа А " В представляют собой химические соединения, образующиеся при взаимодействии элементов В и В подгрупп периодической системы элементов Менделеева. Эти соединения характеризуются наличием у А на внешних оболочках по 3 валентных электрона в состоянии а у В по 5 электронов в состоянии и, вследствие этого, в химических соединениях А В на каждый атом приходится такое же, как и в элементах IV группы, количество электронов, а отсюда идентичность в кристаллической структуре и электронных свойствах этих соединений с алмазом, кремнием, германием и другими элементами IV группы. Однако в отличие от элементов IV группы, имеющих в кристаллической структуре только гомеополярные связи, соединения типа А В имеют как гомеополярные,  [c.249]

Иоффе и Регель [144] исследовали случаи, когда плотность полупроводников увеличивается при плавлении, и установили связь увеличения г с переходом от полупроводниковых к металлическим свойствам. Такие явления наблюдались в случае германия, кремния и некоторых полупроводниковых соединений элементов групп 1П—V (табл. 2.1). В случае теллура и разбавленных растворов селена в теллуре при плавлении объем увеличивается но выше точки плавления существует область увеличения плотности, как показано на рис. 3.2. Следует отметить, что существование максимума плотности в этих сплавах подвергалось сомнению [165, 248], но было подтверждено в более поздней работе [217]. Электропроводность увеличивается при плавлении и при дальнейшем нагревании, что отражает тенденцию к металлическому поведению. Это означает, что г увеличивается при обоих процессах, но при плавлении увеличение межатомного расстояния (главным образом, между цепочками упорядоченной структуры твердого тела) вызывает чистое увеличение объема. Более подробное обсуждение структуры жидкого теллура проведено в последующих параграфах.  [c.53]

Достоверно установлено соединение ОезЫ , существующее в дв х полиморфных модификациях. При нагреве до 900 °С при атмосферном давлении G gN разлагается на элементы [1]. В работе сообщено о существовании соединения G 3N2. Методы получение и свойства нитридов германия изложены в [2].  [c.768]

Андрусяк Р.И. Взаимодействие скандия с переходными металлами IV периода и германием (диаграммы фазовых равновесий, кристаллические структуры и физические свойства соединений). Автореф. дис... канд. техн. наук. Львов, 1988.  [c.271]

Оптические свойства. Исследование оптических свойств кристаллических полупроводников дает обширную информацию об их зонной структуре. Данные об энергетическом спектре аморфных полупроводников также могут быть получены из оптических измерений. Первостепенная роль отводится при этом измерениям спектров поглощения. Спектры поглощения аморфных полупроводников удобно сравнить со спектром тех же материалов в кристаллическом состоянии. Это можно сделать в случаях германия, кремния, соединений селена и теллура. На рис. 11.14 в качестве примера приведен край спектра оптического поглощения аморфного кремния, который сравнивается с соответствующим спектром кристаллического кремния. Аналогичные данные получены для аморфного германия, арсенида и антимонида индия и некоторых других полупроводников.  [c.367]


По характеру сил связи твердые кристаллические тела можно условно разделить на следующие четыре группы ионные кристаллы (Na l, LiF, окислы и др.), в которых основным видом связи является иониая атомные кристаллы (алмаз, кремний, германий и многие химические соединения), в которых основные связи ковалентные металлические кристаллы. с характерной металлической связью молекулярные кристаллы, в которых связь осуществляется в основном силами Ван-дер-Ваальса. Рассмотрим кратко природу сил связи в этих кристаллах и их основные свойства.  [c.15]

Кре.мний находится в IV группе периодической таблицы. Во многих своих соединениях он проявляет заметное сходство с углеродом, особенно в тех случаях, когда он является более электропможительным элементом в соединении. Кремний по своим свойствам очень напоминает также германий, олово н свинец. С титаном, цирконием, гафнием и торием ои имеет меньшее сходство, причем сходство уменьшается с увеличен1гем атомного веса эле.мента.  [c.330]

Во время первой мировой войны появились сведения о том, что в Германии производятся цирконийсодержащие стали, которые обладают ценными св011ствами и применяются для изготовления артиллерийских орудий. В связи с этим некоторыми государственными учреждениями и частными фирмами были предприняты исследования в области пвдучения циркония восстановлением его соединений и изучение свойств циркониевых сплавов. Результаты этих работ не бьши особенно обнадеживающими.  [c.892]

В структурах алмаза, кремния, германия и алмазоподобных соединений сильным ковалентным <т-связям вдоль направлений <111> отвечают максимальные значения модулей упругости Еиь Однако, в отличие от металлов, для этого класса материалов наиболее важны не механические, а электрофизические свойства. Определение пoJ y пpoвoдникa трудно представить до рассмотрения электронной зонной теории кристаллических твердых тел. Можно сказать, что полупроводники - это изоляторы, в которых запрещенная зона между состояниями валентных электронов (валентная зона) и электронными состояниями, ответственными за электропроводность (зона проводи.мости), значительно меньше, чем в обычных изоляторах, и может быть преодолена при наличии определенных условий, например, с помощью теплового возбуждения. Поэтому, в отличие от металлов, электропроводность пoJTV пpoвoдникoв растет с температ рой.  [c.46]

Углерод-углеродные композиты широко используют в медицине для изготовления армирующих пластинок для соединения костей при переломах, изготовления сердечных клапанов, имплантации зубов. Эти материалы характеризуются биосовместимостью с тканями человека, прочностью, гибкостью, легкостью. Они отлично приживаются, не давая нежелательных реакций. Например, стержни тазобедренных суставов из УУКМ, разработанные в Германии, обладают высокой усталостной прочностью и заданной деформацией. Французская фирма СЕМ выпускает композиты сложного состава УУКМ+керамша ( био-карб ),сочетающие биологические свойства углерода, биомеханические и трибологические свойства керамики для изготовления зубных протезов.  [c.165]

Различают полупроводники элементарные и соединения. К элементарным относятся следующие элементы таблицы Менделеева углерод (алмаз), кремний, германий, олово, фосфор, мышьяк, сурьма, висмут, сера, селен, теллур, йод. Полупроводниковые соединения сульфиды цинка, германия, олова, кадмия, ртути, сзинца селениды цинка, германия, олова, кадмия, ртути, свинца теллуриды цинка, германия, олова, кадмия, ртути, свинца арсенид и фосфит галлия карбид кремния и др. Имеются также аморфные (стеклообразные), органические и магнитные полупроводники, свойства которых пока недостаточно изучены.  [c.335]

Гудвин и Герман [101 показали, что для исключения расплющивания и коалесценции отдельных бериллиевых проволок совместно свитые проволоки из титанового сплава и бериллия можно подвергать горячему прессованию между разделительными фольгами из титанового сплава. Выбранная температура горячего прессования была самой низкой из возможных для достижения соединения, одпако она находилась в области, где бериллий быстро терял свою прочность. Например, бериллиевая проволока с прочностью при комнатной температуре 153 ООО фунт/кв. дюйм (107,6 кгс/мм ) разупрочняется до 121 ООО фунт/кв. дюйм (85,1 кгс/мм2) при 1250° F (673° С) и до 98 ООО фунт/кв. дюйм (68,9 itr /MM ) при 1325° F (718 С). Композиционные материалы с 33.об. % бериллия имели прочность в продольном направлении 147 ООО фунт/кв. дюйм (103,3 кгс/мм ) после прессования при 1350° F (732° С). Прочность в поперечном направлении была равна 84 ООО фунт/кв. дюйм (59 кгс/мм ), а модули упругости в обоих направлениях 24-10 фукт/кв.дюйм (16 874 кгс/мм ). Эти результаты находятся в превосходном согласии с теоретическими предсказаниями. Впоследствии усовершенствованная технология поверхностей очистки позволила осуществлять соединение горячим прессованием при 1275—1325° F (688—718° G) с дальнейшим улучшением свойств материала. Усталостные испытания показали, что предел выносливости определяется напряжениями матрицы у поверхности и что он одинаков для всех ориентаций.  [c.324]

Моносульфиды редкоземельных металлов, лантана, германия и других обладают металлической проводимостью и имеют температуру плавления, превышающую 1600° С. Они могут быть использованы в прецизионной металлургии в качестве огнеупорных тиглей, для плавки небольших количеств чистых металлов. Многие сульфиды и селиниды в мелкодисперсном состоянии (особенно соединения, имеющие гексагональный тип решетки) обладают хорошими смазывающими свойствами и могут быть использованы в качестве высокотемпературных смазок, а также в качестве добавок к специальным антифрикционным композициям.  [c.30]

Эти соединения так же, как кремний, германий, серое олово (низкотемпературная модификация а—Sn), обладают полупроводниковыми свойствами. Введением небольших количеств, донорпых и акцепторных примесей можно создавать в этих полупроводниках электронную ( -тип) или дырочную (р-тип) проводимости.  [c.35]


За счет использования аутогезионных свойств пыли, особенно высокодисперсной, можно увеличить степень очистки газов в циклонах и улавливать из очищаемого газа много ценных продуктов, таких, как соединения цинка, свинца, кадмия, селена, теллура, индия, галлия, таллия, германия . Эффективность улавливания пылей в циклонах и мультициклонах можно повысить увеличением сил аутогезии, способствующих укрупнению частиц, и снижением их адгезии к внутренним стенкам циклона  [c.279]

Разность электроотрицательностей уменьшается в ряду соединений, образованных между данным элементом одной группы и элементами другой группы по мере увеличения их атомного номера. Однако это уменьшение не означает усиления ковалентной составляющей связи. На самом деле ковалентный характер связи по мере увеличения атомного номера элемента становится менее ярко выраженным за счет уменьшения энергии ионизации более тяжелых атомов, что вызывает ослабление связей и уменьшение ширины запрещенной зоны. Другими словами, волновые функции электронов, или орбитали, простираются на большие области кристалла, в результате чего связь по своей природе становится более металлической. В рядах таких соединений по мере увеличения молекулярного веса обычно наблюдается уменьшение температуры плавления. В табл. 9 приведены некоторые полупроводниковые соединения и их свойства (в сравнении с германием и кремнием), иллюстрирующие высказанные выше соображения. Исключением является ряд соединений— PbS, PbSe, РЬТе —  [c.265]

Выбор оптимального вида соединений осуществляют с учетом всех параметров (конструктивных, технологических, экономических и др.), определяющих их эффективность [ 16,17]. С этой целью проводят сопоставление полученных данных и технико-экономических требований. Поиск оптимального варианта есть многократно повторяющийся процесс приближения к некоторому критерию оптимальности соединения. Часто ответ на вопрос, какой метод соединения наиболее оптимален, дают только результаты экспериментального исследования. Представитель фирмы Hoe hst AG (Германия) считает [18], что правильно выбранный метод соединения деталей из ПМ должен удовлетворять трем основным критериям физические свойства должны быть достаточны для работы в условиях эксплуатации, продолжительность образования соединения должна соответствовать скорости изготовления самих деталей, стоимость операции соединения должна быть сведена к минимуму. Статьи расходов зависят от метода соединения (табл. 1), а затраты на единицу подвергаемой сборке продукции зависят не только от метода соединения, но и от количества изделий (рис. 1.1). Несмотря на давность приведенных в таблице и на рисунке данных, для сравнительной оценки они могут быть полезны и в настоящее время, поскольку все сопоставляемые методы соединения до сих пор используются при сборке изделий из ПМ.  [c.18]

Известно много веществ, обладающих иолупроводниковыми свойствами. К полупроводникам относится ряд простых веществ германий, кремний, селен, теллур, бор, углерод, фосфор, сера, сурьма, мышьяк, серое олово, иод. Полупроводниками являются бинарные соединения различных типов  [c.47]

Полупроводниковая электроника — одна из перспективных областей применения галлия. Г аллий используют в этой области для легирования германия (галлий сообщает германию дырочную проводимость). Кроме того, в последнее время уделяется внимание применению интер.металлических соединений галлия (с сурьмой, мышьяком и фосфором), обладающих полупроводниковыми свойствами, для изготовления новых типов полупроводниковых приборов. Соединение галлия с сурьмой (ОаЗЬ) рекомендуется для изготовления термоэлементов (э. д. с. = 400 в) и фототриодов, чувствительных к инфракрасной части спектра.  [c.412]

Полупроводники занимают по величине удельной проводимости промежуточное место между проводниками и диэлектриками. Особенности свойств полупроводников позволяют широко использовать их в различных отраслях электротехники в технике связи, в широком диапазоне частот, в различных устройствах радиоэлектроники и в технике сильного тока. Их применяютв выпрямителях, в усилителях, в фотоэлементах, в качестве специальных источников тока и т. п. Наряду со сравнительно давно известными полупроводниками, такими как селен, окислы, сульфиды, различные соединения химических эле ментов и изделия из электротехнического угля, в последние годы стали широко применять в качестве полупроводников Германий и кремний. В полупроводниковой технике эти материалы занимают очень важное место и безусловно сыграют в будущем большую роль в развитии многих отраслей электротехники.  [c.12]

Ответ. Свойства веществ, рассматриваемых в задачах 5-9— 5-12, объясняются теорией выпрямления Мотта. В момент опубликования эта теория была весьма эффективна, однако в дальнейшем она обнаружила много противоречий с резу.яьтатами экспериментоп. Если основываться на теории Мотта, то при выпрямлении работа выхода должна играть решающую роль, однако в случае диода с точечным контактом, образованным в месте соединения тонкой проволоки с германием, независимо от материала проволоки (независимо от величины срт) обратный ток насыщения почти не изменяется. Для объяснения этого явления Бардиным была введена гипотеза о поверхностных уровнях, сущность которой заключается в предположении, что барьер в полупроводниковой области полностью экранирует контактное влияние металла, т. е. в учете энергетических состояний, которыми характеризуются электроны на поверхности полупроводника. В этом случае после ухода электронов, расположенных вблизи поверхности, на ней возникает положительный заряд (см. рис. 5-2-14). Когда плотность заряда на этом поверхностном уровне большая, не наблюдается ни изменения формы барьера в место контакта, ни изменения направления выпрями ления, ни обратного тока насыщения.  [c.331]

Из всего многообразия элементарных полупроводников и соединений, обладающих полупроводниковыми свойствами, в промышленности применяются монокри-сталлические кре.мний и германий, выпускаемые многими сотнями тонн, а также арсенид и фосфид галлия. Последние относятся к группе полупроводниковых сое-  [c.244]

V), 5Ь (V), Ре2+. Некоторые металлы (Ад, Си) несколько растворимы в твердом цинке и отдельных фаз не дают, другие (Со, N1, Ое) — нерастворимы, они могут образовать межкрис-таллические включения вероятно таким же образом ведут себя химические соединения 2пзАз2 либо гпзЗЬг. Твердые растворы опасны преимущественно вследствие загрязнения металла. Элементы и соединения, осаживаемые в виде самостоятельных фаз, способствуют выделению водорода межкристаллической коррозии и ухудщают физические свойства осадка. Мышьяк, сурьма и германий в значительной мере восстанавливаются до гидридов, продукты разложения которых выпадают в шлам.  [c.219]

Полупроводники — это вещества, обладающие определенными физическими свойствами. К полупроводникам относятся углерод (в виде графита), бор, кремний, германий, форсфор, мышьяк, селен, теллур, олово, все окислы металлов и их сернистые соединения.  [c.180]

Гадфильда сталь — Механические свойства 122 Газы химических соединений в смеси с воздухом — Пределы взрываемости 72 Галлий — Растворимость в химических средах 70 — Свойства 3 — Твердость 70 — Физические константы 24 Гелий — Свойства 4 — Физические константы 26 Геометрия резцов для обточки стальных покрытий 343 Германий — Растворимость в химических средах 70 — Твердость 69 — Физические константы 24 Герметичность сплавов алюминиевых литейных 411 Гистерезис — Зависимость от температуры стабилизации для стали 303  [c.541]

Прежде чем продолжить обсуждение границ между жидкими полупроводниками и другими классами жидкостей, укажем приближенно, какого рода вещества обычно считают жидкими полупроводниками. Из элементов в эту категорию попадают расплавленный селен и расплавленный теллур. Другие элементы, такие, как германий и кремний, являющиеся полупроводниками в кристаллическом состоянии, при плавлении становятся металлами. То же самое справедливо для многих полупроводниковых соединений, например соединений элементов П1—V групп. Такой переход полупроводник — металл Иоффе и Регель [144] связали с уменьшением атомного объема. Таким образом, хорошо известная корреляция поведения кристаллических полупроводников с большим атомным объемом, по-видимому, сохраняется и в жидком состоянии. Многие другие соединения, например. ТпгТез, обнаруживают увеличение объема при плавлении или же относительно малые уменьшения объема, но тем не менее имеют электрические свойства, подобные свойствам полупроводниковых жидкостей. Взаимосвязь между электрическими свойствами и объемом более детально обсуждается в гл. 3, 2.  [c.14]


Германий — металл, который по своим химическим свойствам напоминает во многом углерод и кремний. В своих соединениях может быть двух- и четырехвалентным, соединения четырехвалентного более устойчивы. Германий прн 25° С вполне устойчив в атмосфере воздуха, в водопроводной н дистиллированной воде и кислороде. Прн 600—700° С он быстро окисляется воздухом н кислородом. Германий образует два окисла Ge и Gej. При нагревании свыше 200° С с галогенами германий легко образует соответствующие тетрагалоген иды. Наиболее энергично взаимодействие протекает с хлором, затем с бромом и иодом. Соляная и серная кислоты при комнатной температуре взаимодействуют с германием слабо, при 100° С серная кислота медленно растворяет германий. Азотная кислота н царская водка прн их нагреве сильно действуют на германий. Водные растворы едкого натра и едкого калн реагируют с германием очень слабо, тогда как в присутствии HjOa расплавленные щелочи быстро его растворяют.  [c.13]


Смотреть страницы где упоминается термин Свойства соединений германия : [c.40]    [c.4]    [c.9]    [c.68]    [c.151]    [c.61]    [c.2]    [c.276]    [c.2]    [c.37]    [c.279]    [c.304]    [c.506]    [c.596]    [c.282]    [c.20]   
Смотреть главы в:

Металлургия редких металлов Издание 2  -> Свойства соединений германия



ПОИСК



Герман

Германии

Германий

Германий Свойства

Свойства германия

Соединения Свойства

Соединения германия



© 2025 Mash-xxl.info Реклама на сайте