Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Полупроводники германия

Характеристики некоторых полупроводников. Германий (Ge) имеет серебристый цвет, он расположен в IV группе периодической системы его порядковый номер 32, атомный вес 72,6 имеет решетку типа алмаза и ковалентную связь атомов. Удельная электропроводимость германия при 20 С 1000—10" ом -см . Величина запрещенной зоны у германия уменьшается и определяется по формуле  [c.289]

Успехи в создании преобразователей изображения позволили распространить методы фотоупругого анализа на материалы, непрозрачные в видимом свете (полупроводники, германий и кремний, инфракрасные стекла и ряд других). Известны телевизионные инфракрасные полярископы, системы с лазерным сканированием (полярископы с оптико-механическим сканированием объекта).  [c.111]


Общие положения н схемы обработки. Ультразвуковая абразивная обработка эффективна при обработке заготовок из конструкционных материалов, имеющих низкую обрабатываемость резанием, электрофизическим и электрохимическим методами. Это заготовки из хрупких и твердых неэлектропроводных, химически стойких материалов, таких, как стекло, кварц, керамика, ситалл, алмаз, полупроводники (германий, кремний, арсенид галлия), азотированных и цементированных сталей и др.  [c.609]

Германий. Важнейший материал для полупроводников — германий. Имеет кубическую решетку типа алмаза с параметром а = 5,6 А, его удельный вес 5,3, а температура плавления 958° С.  [c.464]

Рассмотрим строение типичного полупроводника — германия.  [c.44]

Рис. 30. Схема строения атома полупроводника германия Рис. 30. Схема строения атома полупроводника германия
Наибольшее применение из материалов высокой чистоты получили элементарные полупроводники германия и кремния. Они имеют кристаллическую решетку типа алмаза.  [c.66]

Велики технологические трудности. Опыт по получению пленок элементарных полупроводников — германия и кремния — показы вает, что для получения пленки определенного контролируемого ти па проводимости необходим высокий вакуум (10 —10 мм рт. ст.) Полупроводниковые пленки чрезвычайно чувствительны к загряз нениям при нанесении, так как эти примеси и будут в итоге опреде лять проводимость пленки. Поэтому в данном случае наилучшим методом испарения будет бестигельный, с помощью электронной бомбардировки.  [c.164]

Транзистор, или полупроводниковый триод, имеет базу, т. е. миниатюрную пластинку из полупроводника (германия или крем-  [c.104]

Чем чище полупроводниковый материал, тем больше подвижность электронов и дырок и тем выше проводимость полупроводников. В тщательно очищенных (чистых) полупроводниках собственная проводимость все же относительно невелика вследствие незначительного количества свободных носителей тока — электронов и дырок. В технических полупроводниковых материалах повышение проводимости достигают введением в тщательно очищенные полупроводники (германий, кремний и др.) легирующих примесей.  [c.306]

У точечных диодов р-л-переход образуется в очень небольшой области соприкосновения острия металлической проволочки (иглы) с пластиной германия или кремния. Вследствие очень малой емкости точечных диодов они находят главное применение в технике высоких частот. У плоскостных диодов р-л-переход образуется на большей площади по сравнению с точечными диодами — на границе раздела двух полупроводников с различного типа проводимостями. Наиболее распространенными плоскостными диодами являются сплавные диоды, у которых р-га-переход образуется в результате сплавления акцепторной примеси (алюминий, индий и др.) с основным полупроводником (германий, кремний).  [c.326]


Германиевый диод (рис. 44) представляет собой пластину 2 из полупроводника германия, в которую вплавлена капелька У металла индия. На их границе образуется запирающий слой 3, пропускающий ток только в направлении от металла индия к германию. Недостатком германиевых диодов является низкая рабочая температура. Уже при 60°С они начинают проводить ток в обоих направлениях.  [c.97]

Результаты исследований ряда авторов по распространению тепловых волн при низкой температуре в монокристаллических диэлектриках (кварце, сапфире, щелочно-галоидных кристаллах), полупроводниках (германии, кремнии, сурьме), металлах (галии, олове, алюминии, свинце) освещены в обзоре [21]. Обнаруженные при этих исследованиях эффекты подобны распространению второго звука в жидком гелии [75]. Определены оптимальные температуры и порядок частот наблюдения этого явления в указанных материалах Установлено, что скорость распространения тепла — величина порядка скорости звука в металлах и совпадает со скоростью звука в полимерах и диэлектриках [21].  [c.120]

Вторая зонная структура, которую мы рассмотрим, принадлежит германию — типичному полупроводнику. Германий имеет кристаллическую структуру алмаза — гранецентрированную кубическую решетку с двумя одинаковыми атомами в каждой примитивной ячейке. Таким образом, зона Бриллюэна, линии и точки симметрии остаются теми же, что и раньше. Зонная структура германия показана на фиг. 29. В противоположность алюминию энергетические щели между зонами здесь довольно велики. Снова энергия в первой зоне начинает возрастать из точки Г, сильно напоминая параболу для свободных электронов, но искажения теперь значительно более сильные. Зоны в алмазе и кремнии очень похожи на зоны в германии.  [c.107]

Полупроводники германий (Ое), кремний (51), карбид кремния (51С), селей (5е), сульфид кадмия (С (15), арсенид галлия (ОаАз).  [c.22]

Температурная зависимость удельного сопротивления полупроводника, в который добавлено небольшое количество примеси, показана на рис. 5.7 [12]. На практике в полупроводнике всегда присутствуют как донорные, так и акцепторные примеси, и разработчик полупроводниковых термометров сопротивления может лишь выбирать соотношение между теми и другими. Для описания процессов проводимости рассмотрим германий, содержащий донорные атомы мышьяка в концентрации N(1 и какие-либо акцепторные атомы в концентрации Л а-На рис. 5.7 можно выделить четыре температурных диапазона, в каждом из которых преобладает какой-либо один механизм проводимости". В высокотемпературном диапазоне [I] проводимость обусловлена главным образом электронами, термически возбужденными из валентной зоны в зону проводимости согласно уравнению (5.8), поскольку все примесные атомы давно уже ионизованы. Это область собственной проводимости для германия она начинается чуть выше 400 К. Этот диапазон не представляет особого интереса для германиевых термометров сопротивления.  [c.198]

Схема интегральная (твердая) — микроминиатюрная радиоэлектронная схема, работа которой основана на использовании различных эффектов, имеющих место в твердом теле наиболее широкое распространение в качестве твердого тела для этой цели получили полупроводники на основе германия и кремния в виде пластин, на которых образованы зоны, выполняющие функции активных и пассивных элементов, т. е. диодов, транзисторов, резисторов, конденсаторов и катушек индуктивности [9].  [c.154]

Транзистор выращенный — транзистор, изготовленный путем выращивания монокристалла германия или кремния из расплава полупроводника благодаря периодическому внесению в расплав различных легирующих примесей или периодическому изменению скорости вытягивания кристалла в выращиваемом монокристалле создаются чередующиеся зоны с электронной и дырочной проводимостью при выпиливании соответствующего куска монокристалла получают транзисторную структуру [9].  [c.157]

Типичными полупроводниками являются кристаллы германия и кремния, в которых атомы объединены ковалентной связью. При температуре около 300 К средняя энергия теплового движения атомов в полупроводниковом кристалле составляет около 0,04 эВ. Это значительно меньше энергии, необходимой для отрыва валентного электрона, на-  [c.154]


Для изготовления транзистора из монокристалла германия с электронной проводимостью в него с двух противоположных сторон вводится примесь атомов индия. Две области монокристалла германия с примесью индия становятся полупроводниками с дырочной проводимостью, а на границах соприкосновения их с основным кристаллом возникают  [c.159]

Найдем, в качестве примера, положение локальных разрешенных уровней примесных атомов V группы таблицы Менделеева в элементарных полупроводниках IV группы. Предположим, например, что в одном из узлов кристалла германия находится атом мышьяка, имеющий пять электронов в валентной оболочке. Четыре валентных электрона участвуют в образовании ковалентных связей с четырьмя соседними атомами германия.- Поскольку ковалентная связь является насыщенной, пятый электрон новой связи образовать не может. Находясь в кристалле, он сравнительно слабо взаимодействует с большим числом окружающих мышьяк атомов германия. Вследствие этого его связь с атомом As уменьшается и он движется по орбите большого радиуса. Его поведение подобно поведению электрона в атоме водорода. Таким образом, задача сводится к отысканию уровней энергии водородоподобного атома. При ее решении необходимо учесть следующие обстоятельства. Поскольку электрон движется не только в кулоновском поле иона мышьяка, но и в периодическом поле решетки, ему необходимо приписать эффективную массу т. Кроме того, взаимодействие электрона с атомным остатком As+, имеющим заряд Ze, происходит в твердом теле, обладающем диэлектрической проницаемостью г. С учетом этого потенциальная энергия электрона примесного атома  [c.237]

Одновременно с процессом образования свободных носителей генерацией) идет процесс их исчезновения рекомбинации). Часть электронов возвращается из зоны проводимости в валентную зону и заполняет разорванные связи (дырки). При данной температуре за счет действия двух конкурирующих процессов генерации и рекомбинации в полупроводнике устанавливается некоторая равновесная концентрация носителей заряда. Так, например, при комнатной температуре концентрация свободных электронов и дырок составляет в кремнии примерно 10 ° см 3, в германии приблизительно Ю з см-з.  [c.242]

Опыт показывает, что с увеличением концентрации доноров (или акцепторов) наклон прямых 1па от 1/Т в области примесной проводимости уменьшается. Согласно (7.168) это значит, что уменьшается энергия ионизации примеси. При некоторой критической концентрации она обраш,ается в нуль. Для элементов пятой группы в германии эта критическая концентрация составляет ЗХ Х10 см , в кремнии 8-10 см . Полупроводник, в котором энергия ионизации примеси обратилась в нуль, называют часто полуметаллом. В нем концентрация электронов и электропроводность нечувствительны к температуре (кроме области температур, где начинается собственная проводимость).  [c.254]

Аморфные твердые тела с тетраэдрическими связями, такие, как кремний, германий, соединения А В . Эти полупроводники в аморфном состоянии нельзя получить путем охлаждения расплава. Их получают, обычно, в виде тонких пленок с помощью различных методов осаждения (термическое испарение в вакууме, катодное напыление и т. д.). Их свойства в значительной степени подобны свойствам кристаллических аналогов.  [c.360]

Влияние примесей на электрические свойства аморфных полупроводников. Долгое время считалось, что аморфные полупроводники в отличие от кристаллических нечувствительны к введению в них примесей. Попытки легирования их атомами, которые в кристаллических полупроводниках являются донорами или акцепторами, не приводили к успеху. Одно из объяснений такого поведения было дано Губановым и несколько позднее Моттом. Оно сводится к тому, что в аморфных веществах может осуществляться такая перестройка связей, что все валентные электроны примесного атома будут участвовать в связях. Так, например, в кристаллическом кремнии атом фосфора образует четыре ковалентные связи. Пятый валентный электрон примесного атома в образовании связей не участвует. Предполагается, что в аморфном кремнии (или германии) атом фосфора окружен пятью атомами кремния (рис. 11.10). Если это так, то в аморфных полупроводниках не должны образовываться примесные уровни.  [c.364]

Подобно другим полупроводникам, германий применяют для изготовления термистеров. Здесь использована сильная зависимость электросопротивления германия от температуры, что позволяет легко определять температуру по изменению электросопротивления. С помощью маленьких германиевых пластинок, служащих термистерами, можно измерять температуру в любом месте помещений, трубопроводов, судов и различных механизмов, что позволяет легко осуществить автоматическую сигнализацию и управление.  [c.531]

Электрические свойства кристаллического твердого тела определяются его зонной структурой, т. е. спектром разрешенных энергетических состояний его электронов, и степенью заполнения этих зон. В кристаллическом кремнии при нулевой температуре валентные электроны (по четыре от каждого атома) заполняют всю валентную зону , отделенную от пустой зоны проводимости энергетической щелью шириной примерно в 1 эБ. В элементарных полупроводниках германий и кремнии модао проследить происхождение запрещенной зоны из ковалентных связей между атомами валентная зона образуется связанными состояниями с более низкой энергией, а зона проводимости —высоколежащими антисвязанными состояниями 1) Поскольку дальнейшее увеличение кинетической энергии электронов, находящихся в заполненной зоне, невозможно, оказывается, что в основном состоянии кристалла подвижные носители заряда отсутствуют, так что при Т— 0 кристалл является диэлектриком,  [c.127]


Важнейшие полупроводники — германий и кремний нашли широкое применение во многих областях техники, особенно з радиоэлектронике, электротехнике и т. п. Эти элементы благодаря высокой подвижности в них носителей тока, обусловленной характером и пространственным расположением электронных связей в них, оказались пригодными для изготовления ряда новых полупроводниковых приборов, таких, как германиевые и кремниевые выпрямители и кристаллические усилители (транзисторы), фотоприемники и пр. Весьма перспективно использование кремния в новых источниках тока— солнечных батареях, преобразующих энергию солнечного света непосредственно в электрическую энергию с к. п. д., превышающим 10%.  [c.178]

По этому методу хорошо обрабатываются твердые и хрупкие материалы, в том числе нетокопроводящие керамика, кварц, рубин, алмаз, стекло (включая жаропрочное), фарфор, полупроводники (германий, кремний), твердые сплавы и др.  [c.14]

Подобно другим полупроводникам, германий применяют для изготовления термистеров. Здесь использована сильная зависимость электросопротивления германия от температуры, что позволяет легко определять температуру по изменению электросопротивления. С помощью маленьких германиевых пластинок, служащих термистерами, можно измерять температуру в любом месте помещений, трубопроводов, судов и различных механизмов, что позволяет легко осуществить автоматическую сигнализацию и управление. Термистеры используют также в реле времени и в приборах, обеспечивающих постепенное (с заданной скоростью) увеличение тока в цепи.  [c.380]

Полупроводники занимают по величине удельной проводимости промежуточное место между проводниками и диэлектриками. Особенности свойств полупроводников позволяют широко использовать их в различных отраслях электротехники в технике связи, в широком диапазоне частот, в различных устройствах радиоэлектроники и в технике сильного тока. Их применяютв выпрямителях, в усилителях, в фотоэлементах, в качестве специальных источников тока и т. п. Наряду со сравнительно давно известными полупроводниками, такими как селен, окислы, сульфиды, различные соединения химических эле ментов и изделия из электротехнического угля, в последние годы стали широко применять в качестве полупроводников Германий и кремний. В полупроводниковой технике эти материалы занимают очень важное место и безусловно сыграют в будущем большую роль в развитии многих отраслей электротехники.  [c.12]

В полупроводниковых диодах р— -переход осуществляется или в виде сплавного контакта между двумя полупроводниками с разного типа электропроводностями, или в виде контакта между пластинкой полупроводника и металлическим острием. В первом случае образуется некоторая плсщадь соприкосновения (контакт) двух пOv yпpoвoдникoв и такие диоды называются плоскостными. Во втором случае пластинка полупроводника (германия или кремния) размером 2 X 2 мм соприкасается с острием металлической тонкой проволоки (такие диоды называются точечными). Точечные диоды обладают очень малой емкостью р— -перехода и применяются на высоких частотах.  [c.95]

Другую группу фотоприборов составляют светодиоды или люминесцентные диоды, в которых прп пропускании прямого тока через р—п-переход происходит интенсивное свечение. Выделение энергии в виде излучения происходит вследствие рекомбинации электрона с дыркой прп переходе электронов в р-область и наоборот. В некоторых полупроводниках (германий, кремний) энергия, выделяющаяся в результате рекомбинации, передается главным образом кристаллической решетке. Однако в арсениде и фосфиде галлия процесс рекомбинацни сопровождается выделением энергии в виде излучения, поэтому в оптоэлектронике эти материалы находят все более широкое применение.  [c.249]

Для изготовления полупроводниковых приборов используют следующие элементарные полупроводники германий, кремний, бор, углерод, селен, теллур, форсфор и др. Из них наибольшее распространение получили германий и кремний.  [c.180]

S/D поправочный множитель в (2.18) может быть значительно больше единицы, что соответствует появлению максимума на спектральной зависимости стационарной фотопроводимости. Например, при D = 20 см2/с и 5" = 10 см/с такой максимум будет наблюдаться при а < 50 см". С увеличением скорости рекомбинации максимум фотопроводимости смещается в область больших а. Максимумы стационарной фотопроводимости на краю фундаментальной полосы поглощения регистрировались для ряда полупроводников — германия, кремния, GaAs и др. — см., например, рис.2.9.  [c.63]

Оптические свойства. Исследование оптических свойств кристаллических полупроводников дает обширную информацию об их зонной структуре. Данные об энергетическом спектре аморфных полупроводников также могут быть получены из оптических измерений. Первостепенная роль отводится при этом измерениям спектров поглощения. Спектры поглощения аморфных полупроводников удобно сравнить со спектром тех же материалов в кристаллическом состоянии. Это можно сделать в случаях германия, кремния, соединений селена и теллура. На рис. 11.14 в качестве примера приведен край спектра оптического поглощения аморфного кремния, который сравнивается с соответствующим спектром кристаллического кремния. Аналогичные данные получены для аморфного германия, арсенида и антимонида индия и некоторых других полупроводников.  [c.367]


Смотреть страницы где упоминается термин Полупроводники германия : [c.377]    [c.180]    [c.68]    [c.109]    [c.244]    [c.85]    [c.53]    [c.169]    [c.34]    [c.308]    [c.530]   
Физика твердого тела Т.2 (0) -- [ c.192 , c.193 ]



ПОИСК



Галогениды щелочных металлов. Галогениды щелочноземельных металлов. Двуокись кремния. Двуокись германия. Сапфир. Фианит Кварцевые стекла. Окисные стекла. Оптические стекла. Оптические бескислородные стекла. Оптическая керамика. Тектиты. Полупроводники Оптические постоянные полимеров

Герман

Германии

Германий

Полупроводники

Элементарные полупроводники кремний, германий



© 2025 Mash-xxl.info Реклама на сайте