Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Применение пористых порошковых материалов

Глава VII. ПРИМЕНЕНИЕ ПОРИСТЫХ ПОРОШКОВЫХ МАТЕРИАЛОВ  [c.199]

Хочется отметить, что в металлических порошковых материалах в процессе их спекания формируется структура, значительно отличающаяся от структуры литых и кованых металлов. Прежде всего, спеченные прессовки - это пористые изделия, в которых количество пор может изменяться от 0,5-2 до 80-90 % (объемн.). Таким образом, для порошковых металлов и сплавов пористость выступает в качестве структурной составляющей. Формой пор, их величиной, морфологией и объемным содержанием определяют физико-химические, механические и другие свойства изделия, а также область их применения. Наличие пористости обусловливает отличие свойств металлических тел от свойств литых тел того же состава. Однако величина пористости сама по себе для литых сплавов не является еще единственным фактором, влияющим на их свойства.  [c.78]


Термической обработке порошковых деталей присущи некоторые специфические особенности. Пористость повышает окисляемость порошковых материалов, вследствие чего их нагрев целесообразно производить в защитной атмосфере. Поры, заполненные газом, снижают теплопроводность, что ухудшает прокаливаемость по сравнению с компактными материалами. Для пористых деталей целесообразно применение закалки с резким охлаждением — в струе воды или с энергичным перемешиванием для ускорения срыва паровой рубашки, затрудняющей охлаждение. После закалки детали должны подвергаться обязательной просушке до полного удаления влаги из пор.  [c.249]

Пористые и компактные конструкционные порошковые материалы принцип получения, состав, свойства, достоинства и недостатки таких материалов, области применения.  [c.26]

В последние годы разработаны теоретические основы диффузионной сварки и получены важные результаты по диффузионным процессам, обеспечивающим образование монолитного соединения твердых неорганических материалов любой природы без изменения их физико-механических свойств. Среди решенных проблем — диффузионное соединение не только однородных, но и разнородных материалов и сплавов, теплофизические характеристики которых резко различны диффузионная сварка деталей больших толщин и изделий разветвленных сечений деталей из пористых, волокнистых и порошковых материалов неметаллических материалов (стекло, полупроводники, керамика, ситалл, кварц, графит, феррит, керметы и т. д.) с металлами расширение применения диффузионной сварки для ремонта и восстановления деталей машин и механизмов.  [c.10]

В промышленности широко используются различные пористые и фильтрующие материалы чаще всего их получают методами порошковой металлургии с применением прессования и спекания [28]. Представляется возможным считать все композиционные материалы и покрытия пористыми, причем порами могут быть частицы второй фазы в любом агрегатном состоянии [28]. В случае необходимости твердые или жидкие поры могут быть превращены в газообразные селективным растворением или выжиганием включений.  [c.251]

Во втором издании (первое - в 1982 г.) рассмотрены физико-химические основы создания порошковых конструкционных, пористых, инструментальных, высокотемпературных и электротехнических материалов и изделий. Приведены систематизированные данные о составах, физических и. механических свойствах таких материалов и изделий и применении их в различных отраслях народного хозяйства. Рассмотрены вопросы качества, надежности и долговечности порошковых изделий. Особое внимание уделено применению малоотходной, безотходной и энергосберегающей технологии.  [c.2]


Применение порошковых пористых материалов позволяет увеличить срок службы насосов, двигателей и других агрегатов, работающих на очищенных жидкостях. С их помощью повышается эффективность химических процессов и улучшается качество вакуумной продукции, создаются предпосылки для получения материалов с новыми свойствами.  [c.258]

В последне время в качестве защитных покрытий все более широкое применение получают различные термопластичные (полиэтилен, полипропилен, фторопласт, поливинилхлорид пентон и т. д.) и термореактивные (эпоксидные смолы и т. д.) материалы, наносимые на защищаемую поверхность в виде сухих порошков. Эти системы обладают следующими экономическими и техническими преимуществами перед обычными лакокрасочными системами, содержащими растворители 1) более низкая стоимость из-за отсутствия растворителей 2) минимальная пожаро-и взрывоопасность, отсутствие токсичных паров и запахов по той же причине 3) возможность широкого изменения толщины покрытия (от 50 мк до 1 мм) при однократном нанесении 4) более высокие защитные свойства покрытий ввиду меньшей пористости пленок 5) незначительные потери при окраске и возможности рециркуляции порошкового материала 6) лучшее покрытие на неровных поверхностях из-за отсутствия усадки при горячей сушке 7) сокращение продолжительности отверждения 8) отсутствие необходимости контроля вязкости системы в процессе нанесения покрытий 9) возможность частой смены цвета композиции и более легкая чистка оборудования.  [c.237]

Описаны методы получения металлических порошков и определения их свойств. Рассмотрены специфические для получения пористых материалов способы подготовки порошков (сфероидизация, откатка, гранулирование, покрытие частиц связующим), методы формирования с приложением давления и без него. Изложены общие закономерности управления свойствами пористых тел на стадии формования и спекания. Представлены новые оригин ные методы определения свойств пористых материалов, основанных на пластическом деформировании, катодном осаждении и осаждении мелкодисперсных частиц в спеченные заготовки, введении лиофильных добавок на стадии формирования, спекания в окислителыю-восстановительной среде и импульсом электрического тока. Изложено практическое применение пористых порошковых материалов.  [c.2]

Выбор износостойких материалов нельзя рассматривать в отрыве от смазки поверхностей. Чем надежнее смазка смачивает поверхность трения, тем большую роль в обеспечении износостойкости играют ее свойства (см. гл. 5, п.З). Поэтому применяются специальные методы нанесения рельефа на поверхность трения и специальные структуры материалов, способные удерживать и сохранять смазку. Один из методов обеспечения этих качеств применение пористых спеченных материалов методами порошковой металлургии. В узлах трения, выполненных из пористых материалов, обеспечивается самосмазывание за счет капилляров, образовавшихся между спекшимися частицами (1211.  [c.265]

Таким образом, применение лиофильных добавок позволяет повысить энергию процесса обезвоживания ППМ. В то же время их влияние на гидродинамические и капиллярные характеристики пористых порошковых материалов носит противоречивый характер. Известно также [152] что неметаллические добавки ухудшают технологические характеристики порошка основы, а также физико-механические свойства готового изделия. Учитьшая это, представляется целесообразным экспериментально исследовать влияние лиофильных добавок на гидродинамические, капиллярные и физико-меха-нические свойства с тем, чтобы по полученным данным прогнозировать состав, режимы формования и свойства ППМ с лиофильными добавками в каждом конкретном случае.  [c.162]

Металлокерамические материалы. Весьма перспективными являются порошковые металлокерамические материалы как на медной, так и на железной основе. Последние обладают высокой теплостойкостью, однако им присущ недостаток металлических материалов — они склонны к схватыванию (при низких температурах) и имеют резко выраженную падающую характеристику коэффициент. трения — температура (фиг. 2, г). К сожалению, производство металлокерамических материалов до сих пор не налажено. Перспективным является применение пористых металлокерамических материалов, пропитанных различными пластмассами (фенол-формальде-гидной смолой).  [c.331]


Для изготовления тепловых труб возможно применение комбинированного ПСМ, получаемого сваркой при прокатке пакета сеток с листовым компактным материалом. Этот материал обладает высокой технологичностью, что позволяет изготавливать из него последующей формовкой и сваркой тепловые трубы требуемой конфигурации. Например, изготовлена плоская тепловая труба в виде диска диаметром 160 мм с вваренной в центре втулкой для установке охлаждаемого триода [1.18]. Корпус тепловой трубы получен из комбинированного ПСМ прокаткой ленты толщиной 0,35 мм и трех слоев фильтровой сетки П60 из стали типа 1Х18Н9Т. Возможно применение ПСМ в испарительных теплообменниках. ПСМ обладает более высокой испарительной способностью, чем пористые порошковые материалы (ППМ), при этом с увеличением пористости испарительная способность ПСМ возрастает. Мощность теплообменников-испарителей с использованием ПСМ на 5—15 % больше, чем трубчатых. Испарительная способность ПСМ из стали 12Х18Н9Т при пористости 0,15 составляет 0.5-10 , а при пористости 0,45—1,54Х ХЮ- м /с, тогда как испарительная способность ППМ из никеля  [c.258]

Преимуществами производства заготовок методами порошковой металлургии являются возможность применения материалов с разнообразными свойствами — тугоплавких, псевдосплавов (медь — вольфрам, железо — графит и др.), пористых (фильтры, самосмазывающиеся подшипники) и других малоотходность производства (отходы не превышают 1...5%) исключение загрязнения перерабатываемых порошковых материалов использование рабочих невысокой квалификации легкость автоматизации технологических процессов и др.  [c.175]

Применение методов порошковой металлургии для изготовления жаропрочных материалов связано со следующими преимуш,ествами возможностью получения таких жаропрочных композиций, которые в настоящее время нельзя получить другими методами (алюминий с окисью алюминия, карбид титана с ни-кельхромокобальтовыми добавками) возможностью получения пористых охлаждаемых жаропрочных материалов структурными особенностями, обеспечивающими более высокую термостойкость и лучшую иибростойкость, чем у литых материалов легким и экономически выгодным получением готовых деталей сложной формы из жаропрочных материалов (лопатки, сопла).  [c.605]

Третий раздел содержит сведения по составу, структуре и свойствам основных цветных металлов и сплавов на их основе. Приведены марки сплавов на основе алюминия, магния, титана, цинка, меди, никеля и указаны основные области их применения. С учетом экономической целесообразности широкого применения порошковых материалов даны характеристики материалов для подшипников скольжения, конструкционных, антифрикционных, фрикционных материалов, а также пористых фильтров тонкой 0ЧИСТЮ1 жидкостей и газов.  [c.3]

В зависимости от плотности и назначения порошковые материалы подразделяются на две группы 1) плотные — материалы с минимальной пористостью, изготовленные на базе порошков железа, меди, никеля, титана, алюминия и их сплавов и 2) пористые, в которых после окончательной обработки сохраняется свыше 10-15 % пор по обьему. Первая группа материалов нашла широкое применение в машино- и приборостроении, автомобильной и авиационной технике и других отраслях оборонного и общегражданского производства. Высокая пористость материалов второй группы обеспечивает приобретение ими специальных свойств и позволяет применять их для изготовления специальных изделий (изделий анти-  [c.789]

Уменьшения пористости можно достичь следующими путями повышением химической гомогенности композищ1Й, применением мелкодисперсных порошков [194], предварительной дегазацией порошковых материалов [68].  [c.129]

Для сокращения объема исследований по выбору требуемых режимов деформирования необходимо теоретически описывать закономерности пластического деформирования ППМ. В существующих теориях пластичности пористых материалов используется феноменологический подход к описанию свойств материала и вследствие этого не учитыва-етсй реальная структура ППМ. В то же время такие структурные параметры, как размеры и число межчастичных контактов, форма и размер пор оказывают существенное влияние на закономерности пластического деформирования ППМ. В связи с этим проявляется определенный интерес к разработке дискретно-контактных теорий пластичности порошковых материалов. Однако данные теории не учитьшают влияния структуры пор ППМ на закономерности пластического деформирования и применение их ограничено схемами нагружения.  [c.188]

Пористые материалы (ПМ) на металлической основе применяются в качестве фильтроэлемеитов, смесителей, газовых лира, глушителей шума и др ПМ классифицируются по назначению, химическому составу и типу структурообразующих элементов и способу получения Для изготовления сварных конструкций, обладающих заданными гидравлическими, структурными и механическими свойствами, наиболее широкое применение иашли пористые порошковые (ППМ) и сетчатые материалы (ПСМ) на осиове коррозионно-стойких сталей  [c.507]

Менее изучен характер зависммости /Сэф = /(е), особенно для 8>0,4. Остановимся на этой зависимости более подробно. Проницаемость является индивидуальной характеристикой пористого материала. Поэтому существует большое количество моделей, описывающих взаимосвязь между проницаемостью п структурными параметрами, однако они недостаточно удовлетворительно согласуются с экспериментальными данными. Можно отметить только качественное влияние различных факторов на проницаемость. Так, для пористых металлов существенную роль играют материал, размер и форма частиц исходного порошка и технология изготовления металлокерамики. Применение более крупных порошков приводит к увеличению проницаемости. Подобный эффект наблюдается при повышении (в определенных пределах) однородности исходного порошка. Несмотря на то что разброс зависимостей для различных материалов весьма значителен, для имеющих идентичную структуру порошковых металлов из частиц неправильной формы результаты довольно близки. Следует отметить, что наиболее важным является то, что для таких структур имеется один параметр (пористость), количественное влияние которого на коэффициент проницаемости можно оценить, а сам параметр легко проконтролировать.  [c.73]


Спеченные титановые полуфабрикаты (прутки, трубы, листы) и детали находят все большее применение в различных отраслях машиностроения, судовом и авиационном приборостроении, химической промышленности и др. В качестве исходных используют порошки, получаемые металлотермией (предпочтительнее восстановление диоксида титана гидридом кальция), электролизом, распылением или гидрированием титановых материалов. Холодное прессование порошка проводят в пресс-формах при давлениях 400 - 500 МПа, а спекание заготовок - при 1200- 1250°С в вакууме. Остаточную пористость 5-10% можно устранить дополнительной обработкой заготовки давлением (ковкой, штамповкой, мундштучным формованием). Иногда титановый порошок подвергают вакуумному горячему прессованию в молибденовых пресс-формах при давлении 50 - 80 МПа. Применяют и более сложные схемы изготовления порошок прокатывают в пористый лист, из которого горячим компактированием в газостате или горячей экструзией в оболочке получают изделие. Титаномагниевые сплавы можно получать инфильтрацией спеченного пористого каркаса из порошка титана расплавленным магнием либо прессованием заготовок из смеси порошков сплава Ti - Mg и титана с последующим спеканием их в вакууме при 950 - 1000 °С. Такие сплавы, содержащие 10-80 % Mg, хорошо обрабатываются давлением (прокаткой, штамповкой, ковкой, экструзией и т.п.). В целом метод порошковой металлургии позволяет повысить использование титана при изготовлении деталей до 85 - 95 % против 20 - 25 % в случае изготовления их из литья.  [c.25]

В 1909 г. была выдвинута идея создания порошковых пористых материалов и изделий. В отличие от других изделий им характерна равномерная объемнораспределенная пористость, которая является едва ли не важнейшей технической характеристикой, определяющей саму возможность применения таких материалов в различных отраслях техники. Обычно поры составляют по объему 10- 13% (фрикционные материалы), 15-35% (антифрикционные материалы), 25-50% (фильтры) и от более 50 % до 95 - 98 % (соответственно высокопористые и так называемые пеноматериалы). Машиностроение и электротехника, металлургия, космонавтика и химическая промышленность, ядерная энергетика и медицина, пищевая, текстильная и десятки других Отраслей промышленности нуждаются в том или ином типе таких пористых деталей.  [c.31]

Говоря о порошковых антифрикционных материалах и изделиях, обычно имеют в виду пористые подшипники, многослойные, металлопластмассовые и металлостеклянные антифрикционные материалы. Они находят широкое применение в тракторо- и сельхозмашиностроении, автомобильной промышленности, тяжелом, энергетическом и транспортном машиностроении, в текстильной и пищевой промышленностях, в авиационной и бытовой технике, приборостроении и др.  [c.32]

Коррозионная стойкость сильно зависит от пористости например, при увеличении пористости нержавеющей стали с 7 до 14% ее стойкость в полунормальной соляной кислоте при комнатной температуре понижается в 1,5—2 раза. Для получения из легированных порошков изделий с пористостью менее 10% обычно применяют двукратный цикл прессования и спекания, что, естественно, удорожает производство и ограничивает область применения этих материалов. Исследования, однако, показали реальную возможность однократного прессования испекания. Интересные результаты дает присадка к нержавеющей порошковой стали бора или фосфора, образующих легкоплавкую эвтектику и активизирующих процесс спекания.  [c.346]

Делались также успешные попытки получить долговечные высокоэффективные катоды путем заполнения актив1ным материалом пористой металлической лодложки или проволочной сетки, откуда он мог бы непрерывно диффундировать к поверхности. Примером такого катода является катод для тиратронов [Л. 41] с большим сроком службы, состоящий из молибденового плетеногО чулка, заполненного гранулированным алюминатом бария. Такие катоды работали в ртутных тиратронах в течение 24 ООО ч. Перфорированные молибденовые трубки, содержащие спеченную окись тория, при.менялись в качестве катодов в магнетронах. В случае применения в лампах тлеющего разряда [Л. 42] пористой керамики или угля, пропитанных щелочными и щелочноземельными металлами, скорость испарения активного вещества снижается благодаря распределению его в норах, что позволяет работать при более высокой температуре катода. Был предложен также катод [Л. 43] в виде пористой трубки из вольфрама или молибдена, изготовленной методом порошковой металлургии и пропитанной торием. Такой катод дает высокую эмиссию без искрения в высоковольтных мощных лампах. Для магнетронов 28  [c.435]

В течение следующих 30 лет метод Соболевского практически почти не применялся. К нему вернулись лишь на рубеже XX столетия, когда рост техники настоятельно потребовал применения новых, в частности тугоплавких, материалов. Так возникло производство вольфрамовых нитей накала для электрических ламп и почти в то же время производство меднографитовых скользящих контактов (щеток) для динамо-машин. В двадцатых годах началось производство металлокерамических твердых сплавов и применение железных порошков для магнитных сердечников в индукционных катушках. Далее начали применять пористые подшипники, сначала бронзовые, а в 30-х годах и на железной основе. Вызванное второй мировой войной развитие военной техники повлекло за собой общий бурный рост металлокерамики и, в частно--сти, железокерамики. Все более широкая номенклатура различных деталей машино-и приборостроения, деталей вооружения, измерительных инструментов и т. п., главным образом небольших габаритов и веса и сравнительно несложной конфигурации, становится объектом порошковой металлургии железа, меди и их сплавов. Наконец, послеаоеЕ1ный период развития порош-  [c.1472]

Широкое практическое применение в металлургии нашла УЗ-вая очистка. Она обеспечивает удаление с поверхности издели различных плёнок, нагаров, жировых и других отложений. В порошковой металлургии УЗ-вые колебания могут быть использованы для получения и диспергирования порошков, для интенсификации процессов очистки их поверхности, для прессования, спекания, пропитки жидким металлом пористых изделий и для проведения других процессов. Так, УЗ-вой способ распыления расплавов для приготовления порошков лишён многих недостатков, присущих способам механич. дробления и пневма-тич. распыления, химич. и электролитич. методам диспергирования. В частности, использование УЗ-вого распыления даёт возможность получать практически монодпсперсный порошок с частицамп сферической формы (диаметром — 40 мкм при частоте УЗ 20кГц) без окисных плёнок на поверхности. Этим методом можно изготавливать порошки из сплавов и мягких и вязких материалов.  [c.350]

В США (т.е. второе отрицание), но уже на более высокой основе если Годдард использовал керамические пористые материалы, то в 40-е гг. стали применяться более прочные металлические материалы, изготовленные методами порошковой металлургии. Итак, налицо была повторяемость на высшей основе, причем в развитии транспирационного охлаждения она проявилась еще раз, когда после значительного перерыва этот метод вновь нашел применение на этот раз на двигателе фирмы "Пратт-Уитни" (см. разд. 4.2).  [c.130]

Благодаря своим фильтрующим свойствам металлокерамические материалы широко применяются при создании новых приборов газожидкостного анализа, в различных газораспределительных устройствах, масловлагоотделительных системах, различных катализаторах, огнепреградителях и других системах. Известны также пористые спеченные уплотнительные материалы, которые широко используются в сельскохозяйственном машиностроении, турбостроении, арматуро-строении и т. д. Изготовление уплотнительных колец методом порошковой металлургии позволит упростить технологию изготовления, сократить отходы материала при механической обработке и освободиться от применения дефицитных труб из коррозионно-стойкой стали, латуни, бронзы.  [c.204]



Смотреть страницы где упоминается термин Применение пористых порошковых материалов : [c.4]    [c.235]    [c.63]    [c.197]    [c.7]    [c.215]    [c.17]    [c.15]    [c.161]   
Смотреть главы в:

Формирование структуры и свойств пористых порошков материалов  -> Применение пористых порошковых материалов



ПОИСК



А* порошковые

Н пористого материала

Пористость

Пористость материалов

Пористые порошковые материалы



© 2025 Mash-xxl.info Реклама на сайте