Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общие теоремы Дифференциальные уравнения равновесия

В первом разделе тома даются принципы и основные уравнения механики упругого деформируемого твердого тела теории деформаций и напряжений, дифференциальные уравнения равновесия, связь между компонентами напряжения и деформации, общие теоремы теории упругости и строительной механики, вариационные принципы и их использование для решения задач механики деформируемого твердого тела, методы конечных и граничных элементов.  [c.16]


Сформулированные выше утверждения относились к случаю, когда линейное приближение приводит к дифференциальным уравнениям с постоянными коэффициентами. Это типично для задач об устойчивости состояний равновесия или стационарного движения. В общем случае матрица 6 уравнений первого приближения зависит от 7. При этом нельзя утверждать, что из асимптотической устойчивости решений уравнений первого приближения следует устойчивость решений нелинейной системы. Ляпунов выделил класс так называемых правильных систем, для которых справедлив аналог теоремы об устойчивости по первому приближению. Среди этих систем - системы с переменными коэффициентами, которые являются ограниченными периодическими функциями времени с одинаковым вещественным периодом.  [c.460]

Почти половина этого сочинения посвящена основам термодинамики с подробным изложением первого и второго законов и и.х. следствий. Здесь говорится об энтропии, свободной энергии, изобарном потенциале и условиях равновесия термодинамических систем. Заканчивается эта часть книги изложением теоремы Нернста. Автору удалось в небольшом курсе изложить наиболее существенные вопросы общей теории термодинамики. При проведении в этой книге отдельных исследований используются общие дифференциальные уравнения термодинамики. Вторая часть этого сочинения посвящена общей теории фаз.  [c.227]

Третье издание учебника имеет следующее построение курса. Часть первая Основные законы термодинамики . Гл, 1 Введение гл, 2 Первое начало термодинамики гл. 3 Второе начало термодинамики (сущность второго начала термодинамики интегрирующий делитель для выражения элементарного количества тепла энтропия аналитическое выражение второго начала термодинамики полезная внешняя работа термодинамические потенциалы и характеристические функции тепловая теорема Нернста дифференциальные уравнения термодинамики в частных производных статистическое толкование второго начала термодинамики) гл. 4 Термодинамическое равновесие гл. 5 Термодинамические процессы гл. 6 Газы и их смеси гл. 7 Насыщенные влажные и перегретые пары гл. 8 Течение газов и паров гл. 9 Общий термодинамический метод анализа циклов тепловых двигателей . Часть вторая Рабочие циклы тепловых двигателей . Гл. 10 Сжатие газов и паров гл. 11 Циклы поршневых двигателей внутреннего сгорания гл. 12 Циклы газотурбинных установок и реактивных двигателей гл. 13 Циклы паросиловых установок гл. 14 Циклы холодильных машин гл. 15 Термодинамические принципы получения теплоты гл. 16 Термодинамика химических реакций .  [c.349]


Уравнение (20.20) называется дифференциальным уравнением малых колебаний системы около положения устойчивого равновесия. Для получения этого уравнения не обязательно прибегать к уравнениям Лагранжа второго рода — можно пользоваться любыми другими методами, например, общими теоремами динамики. Важно, чтобы в результате получилось линейное дифференциальное уравнение второго порядка с постоянными коэффициентами. Однако изложенный здесь метод является общим, одинаково пригодным как для простых, так и для сложных систем с несколькими степенями свободы.  [c.466]

Наиболее общий способ — непосредственное интегрирование дифференциального уравнения криволинейной формы равновесия, как это проделано выще для простейшего случая двухпролетной стойки. Другой способ, в ряде случаев более быстро ведущий к цели, — использование теоремы о трех моментах , обобщенной на случай продольно-поперечного изгиба (см. ниже пример расчета конденсаторных трубок в условиях меняющегося теплового режима конденсатора).  [c.781]

Первым вопросом, естественно возникающим при качественном рассмотрении динамических систем, является вопрос о том, какие типы фазовых траекторий вообще возможны в динамических системах второго порядка. Траектории, встречавшиеся в рассмотренных ранее примерах (см. гл. П, III и V), являлись либо состояниями равновесия, либо замкнутыми траекториями, либо, наконец, траекториями, стремящимися к состояниям равновесия или к замкнутым траекториям при. - -оо (или при — оо). Исчерпываются ли этим возможные типы фазовых траекторий, и если нет, то нельзя ли установить, каковы вообще все возможные типы отдельных траекторий Оказывается, что на основании двух общих теорем теоремы Коши о существовании и единственности решения системы дифференциальных уравнений и теоремы о непрерывной зависимости этого решения от начальных условий (см. Дополнение 1) — можно получить исчерпывающие сведения относительно возможного характера отдельной траектории [137, 81]. Рассмотрению этого вопроса будет посвящен следующий параграф.  [c.396]

Кинематическая теорема. Пусть Vi, Iri—действительные поля напряжений, скоростей перемещений и скоростей деформаций. Рассмотрим кинематически возможное поле скоростей v e, которое удовлетворяет условию несжимаемости divo = =0, а на поверхности тела — кинематическим (XI.9) и смешанным (XI. 11) граничным условиям. Здесь и далее знак означает виртуальное состояние. Соответствующие кинематические возможные скорости деформации равны %i/ — (Viv Ч- V/v ). Они не удовлетворяют уравнениям состояния (XIV.6), так как определенные через них напряжения в общем случае не удовлетворяют дифференциальному уравнению равновесия div = 0. Но кинематически возможные поля скоростей удовлетворяют соотношению (XIV.2)  [c.296]

Первое систематическое рассмотрение устойчивости равновесия упругих тел принадлежит Дж. Брайану Он выяснил пределы применимости теоремы Кирхгофа и показал, что при условии малых деформаций она отпадает, если только один или два размера тела можно считать малыми. При этом явление неустойчивости может иметь место в пределах упругости, если произведение модуля упругости Е на квадрат отношения малого размера к конечному будет того же порядка, что и предел упругости материала. Дальнейшая разработка общей теории устойчивости равновесия упругих тел принадлежит Р. Саусвеллу Он устраняет ограничение относительно малости деформаций и оперирует с идеальным телом бесконечно большой прочности. При этих условиях и тела, у которых все размеры одного порядка, могут оказаться в состоянии неустойчивого равновесия. Исходя из однородного напряженного состояния тела, Р. Саусвелл дает точкам тела весьма малые перемещения и, v, w ) и для этой отклоненной формы пишет дифференциальные уравнения нейтрального равновесия, причем считает начальные деформации конечными. То соотношение между внешними силами и размерами тела, при котором полученные уравнения дают для и, у и w решения, удовлетворяющие условиям на поверхности, определяет критическое значение нагрузки в рассматриваемом случае. Применяя свой общий метод к тонким стержням и пластинкам, Р. Саусвелл нашел, что имеющееся решения задач устойчивости являются лишь первыми приближениями, хотя и вполне достаточными для практических приложений. Мы в дальнейшем ограничимся этими приближенными решениями, отсылая интересующихся теорией вопроса к работе Р. Саусвелла.  [c.258]



Смотреть страницы где упоминается термин Общие теоремы Дифференциальные уравнения равновесия : [c.8]    [c.2]    [c.17]   
Смотреть главы в:

Теория упругости  -> Общие теоремы Дифференциальные уравнения равновесия



ПОИСК



Общие теоремы

Общие уравнения

Общие уравнения равновесия

Уравнения дифференциальные равновесия

Уравнения равновесия сил

Уравнения равновесия уравнения



© 2025 Mash-xxl.info Реклама на сайте