Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория изгиба прямоугольных упругих пластинок

Теория изгиба прямоугольных упругих пластинок. Эта  [c.313]

Мы получили ряд решений плоской задачи для случая пластинки, ограниченной прямоугольным контуром. Каждому найденному решению соответствуют вполне определенные условия закрепления и вполне определенное распределение усилий по контуру. Например, в случае изгиба балки силой, приложенной на конце, мы предполагали закрепление одной точки и одного линейного элемента, проходящего через эту точку на левом конце балки, и нашли распределение напряжений в том предположении, что касательные усилия, приложенные к правому концу балки, изменяются по высоте балки по параболическому закону. Если способ закрепления балки будет отличаться от принятого нами или изгибающая сила Q будет распределена по какому-либо иному закону, то полученное нами решение не будет точным решением соответствующей задачи теории упругости. Однако во многих технически важных задачах им можно будет пользоваться для приближенного определения напряжений. Например, его можно применить к тому случаю, когда все точки опорного сечения балки закреплены и сила Q распределена любым образом по плоскости нагруженного концевого сечения балки. При этом погрешности будут тем меньше, чем меньше высота балки по сравнению с ее пролетом.  [c.83]


Этот результат представляет собой случай изгиба пластинок, исиользоваиный впоследствии А. Надаи для экспериментального подтверждения приближенной теории изгиба ), предложенной Кирхгоффом. О другой интересной краевой задаче упоминается н Натуральной философии Томсона—Тэйта. Здесь сообщается по этому поводу До сих пор, к сожалению, математикам не удалось решить, а возможно, что они даже и не пытались решать, прекрасную задачу об изгибании широкой, весьма тонкой полосы (подобной, например, часовой пружине) в круговое кольцо ). Лэмб исследовал антикластический изгиб по краю тонкой полосы ) и достиг большого прогресса в решении задачи о балке ). Рассматривая бесконечно длинную балку узкого прямоугольного сечения, нагруженную через равные интервалы равными сосредоточенными силами, действующими поочередно вверх и вниз, он упростил решение двумерной задачи а для некоторых случаев получил уравнения кривых прогиба. Таким путем было показано, что элементарная теория изгиба Бернулли достаточно точна, если высота сечения балки мала в сравнении с ее длиной. При этом было также показано, что поправка на поперечную силу, даваемая элементарной теорией Рэнкина и Грасхофа, несколько преувеличена и должна быть снижена до 75% от рекомендуемого этой теорией значения. Надлежит упомянуть также и о труде Лэмба, посвященном теории колебаний упругих сфер ) и распространению упругих волн по поверхности полубесконечного тела ), а также в теле, ограниченном двумя плоскими гранями ). Он изложил также и теорию колебаний естественно искривленного стержня ). Особый интерес для инженеров представляет его и Р. В. Саусвелла трактовка колебаний круглого диска ).  [c.407]

Весьма эффективным в получении приближенных решений для задач теории упругости показал себя метод Рэлея—Ритца. Для того чтобы найти частоту основной формы колебаний сложной системы, Рэлей рекомендует задаться некоторым начальным видом этой формы, вывести из него выражение соответствующей частоты,, а затем принять параметры, определяющие ату избранную форму таким образом, чтобы выражение для частоты приняло минимальное значение. В. Ритц ), исследуя задачу изгиба прямоугольной пластинки, приходит к выражению потенциальной энергии  [c.478]

Совершенно аналогйчно прямоугольной пластинке исследуется и вопрос об устойчивости плоской формы равновесия круглой пластинки. Кто придает большое значение точным решениям, тот в случае круглой пластинки будет чувствовать себя удовлетворенным в большей степени, чем в случае прямоугольной пластинки, так как мы можем совершенно аналогично тому, как это оказалось возможным в третьей главе при рассмотрении изгиба круглых пластинок, симметрично нагруженных силами, перпендикулярными к их поверхности, вывести сравнительно просто точное выражение для критической нагрузки. Но для практических целей это не имеет никакого значения, и потому мы предпочитаем вывести формулу для критической нагрузки круглой пластинки совершенно таким же способом, как и для прямоугольной. Для этой цели нам нужно лишь составить выражение работы деформации при изгибе для такой возможной формы изогнутой поверхности со стрелою прогиба /, которая не очень отличалась бы от получающейся при потере устойчивости плоской формы. В третьей главе такого готового выражения, мы непосредственно не имеем, так как там задачу, относящуюся к круглой пластинке, мы решали на основании диференциального уравнения упругой поверхности, а не на основании теорем о работе упругих сил. Но мы легко можем его вывести дополнительно. По формуле (103), найденной нами в 27, стрела прогиба /круглой пластинки, нагруженной в центре сосредоточенной силой Р и свободно опертой по контуру, выражается следующим образом  [c.319]


Выводом уравнений изгиба пластинок, на основании молекулярной модели и обпщх уравнений теории упругости, занимались Пуассон, Навье и Коши. У Навье мы находим вполне строгое уравнение для статического изгиба пластинки как для случая нормальной нагрузки, так и для случая выпучивания пластинки под действием сил на контуре, лежащих в плоскости пластинки В случае свободно опертой прямоугольной пластинки Навье получил правильное решение, использовав двойные тригонометрические ряды. Общим анализом условий на контуре пластинки занимался Пуассон , однако он сформулировал одно лишнее условие на контуре в случае задания на нем внеш-58 них сил. Правильное число условий было указано позже Г. Кирхгофом и ясно интерпретировано физически В. Томсоном . Кирхгофу принадлежит общая теория изгиба стержней, а также теория пластинок, основанная на четких гипотезах, близких к гипотезе плоских сечений в элементарной теории изгиба, и вполне строгий вывод известных уже уравнений малых прогибов пластинок при помощи принципа виртуальных перемещений. Позже Кирхгоф и Клебш развили теорию для не слишком малых прогибов пластинок.  [c.58]

Он получил дальнейшее развитие в известных работах И. Б. Бубнова [67], С. П. Тимошенко [235], Б. Г. Галеркина [82], П. Ф. Папковича [186], А. Н. Крылова [133, 134] и других. Методы рядов и интегралов Фурье широко используются при решении плоских и пространственных задач теории упругости в работах Л. В. Канторовича и В. И. Крылова [122], А. И. Лурье [146], Я. С. Уфлянда [245], Снеддона [229], П. М. Оги-балова [176] и других. Так, в работах Б. Г. Галеркина [82], выполненных в течение 1915—1933 гг., был рассмотрен изгиб пластинок различных очертаний прямоугольной, в виде кругового и кольцевого секторов, в форме прямоугольного равнобедренного треугольника — при различных граничных условиях на контуре. При рассмотрении прямоугольных пластинок решение неоднородного бигармонического уравнення выбиралось в виде суммы частного решения и рядов Фурье по одной и второй переменной с неизвестными коэффициентами. Б. Г. Галеркин указал на выбор наиболее удачной формы частного решения.  [c.143]

Метод ЛТП2 (ГОСТ 26388—84) предусматривает испытание нескольких типов сварных образцов плоских круглых толщиной 1—3 мм с диаметральным швом по схеме изгиба, жестко заделанной по контуру пластинки распределенной нагрузкой, плоских прямоугольных толщиной 8—20 мм с поперечным или продольным швом по схеме четырехточечного изгиба, тавровых толщиной 8—20 мм по схеме консольного изгиба (рис. 6.18). Разрушающие напряжения определяют приближенно по соотношениям теории упругости для плоских круглых образцов  [c.147]


Смотреть страницы где упоминается термин Теория изгиба прямоугольных упругих пластинок : [c.279]    [c.470]    [c.73]    [c.671]    [c.2]   
Смотреть главы в:

Пластичность и разрушение твердых тел Том2  -> Теория изгиба прямоугольных упругих пластинок



ПОИСК



350 — Упругость при изгибе

Изгиб пластинки

Изгиб прямоугольной пластинки

Пластинка упругая

Пластинки Теория

Пластинки прямоугольные

Пластинки прямоугольные на упругом

Пластинки — Пластинки прямоугольны

Теория изгиба

Теория пластинок с.и. пластинки

Теория упругости

Упругость Теория — см Теория упругости



© 2025 Mash-xxl.info Реклама на сайте