Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

О решении задачи изгиба для различных сечений

Случай работы бруса на изгиб, вызванный действием нагрузок, приложенных в различных сечениях и действующих в обеих главных плоскостях, условимся называть пространственным косым изгибом (рис. 13.1). Это наименование обусловлено тем, что при указанном виде нагружения упругая линия бруса — пространственная кривая. Дело, конечно, не в том, вводить или не вводить этот термин. Например, многие авторы относят этот вид нагружения к вопросу об общем случае действия сил на брус. Существеннее вопрос о решении задач в отличие от плоского косого изгиба здесь, чтобы отыскать опасное сечение бруса, может потребоваться дополнительное исследование, проверка не-  [c.140]


Задачи изгиба, кручения и растяжения неоднородных призматических стержней имеют широкое приложение в различных областях техники. Рассмотренные ранее решения были получены с использованием ряда допущений. Так, в главе I в основу их была положена гипотеза плоских сечений в главе II рассматривалась плоская задача.  [c.73]

Решение задачи об изгибе для различных контуров поперечных сечений. Покажем теперь, как определить из уравнения (6) и условия (7) функцию X, если поперечное сечение балки имеет заданную форму, Постоянную, которую мы должны к этой функции прибавить, выберем так, чтобы в начале координат функция X исчезала.  [c.351]

Задача определения модулей межслойного сдвига окончательно не решена до настоящего времени. Сложность ее решения обусловлена тем, что межслойные модули сдвига, как правило, определяются на стержнях, где трудно реализовать условия чистого сдвига. Обычно для этой цели используется изгиб коротких балок или кручение стержней с различным отношением параметров их поперечного сечения. Первый способ прост в реализации, но не позволяет получать достоверных сведений вследствие сложного напряженного состояния в образце при малом отношении //Л (см. с. 41). Приближенные зависимости, которые исполь-  [c.45]

Аналогично можно рассматривать другие сечения, различные нагрузки и граничные условия. Двутавровое сечение при изгибе с точки зрения конструкций минимальной массы представляет наибольший интерес. Его также можно рассматривать изложенным методом, при котором оптимальное решение находят из решения некоторой прямой (но нелинейной) задачи, минуя анализ напряженного состояния и прогибов. Легко убедиться непосредственной проверкой, что функция h х) или / (х) для равнопрочной балки минимизирует общую массу балки по сравнению с другими наперед заданными функциями h (х) или f (х).  [c.47]

Следующий раздел книги Клебш посвящает задаче Сен-Ве-нана. Он опускает соображения физического характера, введенные Сен-Венаном при использовании им здесь полуобратного метода, и ставит проблему в чисто математической формулировке найти силы, которые должны быть приложены к торцам призматического бруса, если объемные силы отсутствуют, по боковой поверхности бруса не приложено никаких сил, но между продольными волокнами действуют лишь касательные напряжения в осевом направлении. Таким путем Клебш получает возможность задачи осевого растяжения, кручения и изгиба рассматривать и решать как единую задачу. Подобная трактовка вопроса принимает более сложный вид, чем у Сен-Венана, поскольку при этом подходе опускается физическая сторона явления и решение получается слишком абстрактным, чтобы заинтересовать инженера. Клебш проходит мимо тех многочисленных приложений, на которых останавливается Сен-Венан, демонстрирующий эффективность своего метода на балках различных поперечных сечений. В качестве примеров Клебш приводит случаи сплошного эллиптического бруса и полого бруса, поперечное сечение которого образовано двумя конфокальными эллипсами. Почти никакого практического интереса эти задачи не представляют, но Клебш обращается к ним для того, чтобы впервые ввести новый прием математической трактовки, а именно, использовать сопряженные функции в решении задачи Сен-Венана.  [c.310]


Что касается задач по изгибу листа в штампах и по изгибу балок различного сечения в тех случаях, когда мы имеем дело с конечной, а не малой (упруго-пластической) деформацией, то задачи эти также еще недостаточно разработаны и освещены в литературе. На практике при грубо приближенном их решении обычно прибегают к самым разнообразным приемам полуэмпири-ческого характера.  [c.298]

Напряжения в изогнутой балке (345).—228. Постановка задачи (345).— 229. Касательные напряжения при изгибе балки (346).—230. Формулы для сме щений (349). — 231. Решение задачи об изгибе для различных контуров поперечных сечений (351).— 232. Исследование смещений (354). —233. Распределение касательных напряжений (357),— 284, Обобщение предыдущей тев ин (339). (-т2МС, Аналогия с формой растянутой мембраны под действием переменного давления (361). —  [c.11]

Получить уравнение, соответствующее (-15), когда жесткость при изгибе постоянна по длине одного участка, но меняется от участка к участку. Полученное соотношевие использовать для решения следующей задачи ( amb. М. S. Т. 1930). Модуль Юнга Е одинаков для всех участков. Пусть А, В, С, D — четыре жесткие опоры, расположенные на одном уровне. Пролеты между ними соединеггы различными по длине и сечению балками АВ, ВС, D. АВ и D имеют одинаковую длину а и одинаковый момент инерцин/ , ВС имеет длину Ь и момент инерцин /(,. Каждая из АВ и D несет равномерно распределенную нагруз.су, интенсивность которой на единицу длины равна w . ВС несет равномерно распределенную нагрузку, интенсивность которой на единицу длины  [c.100]

В области проектирования арочных мостов инженеры проодол-жали рассматривать каменную арку как систему абсолютно жестких каменных блоков, хотя, как мы уже видели (стр. 180), еще Бресс дал полное решение для упругой арки с заделанными пятами. Понятия кривой давления и линии сопротивления были введены в исследование арок около 1830 г. Ф. Герстнеру (F. J. Gerstner) ), по-видимому, следует приписать первое исследование пиний давления. Поводом к тому послужили вопросы проектирования висячих мостов, в связи с чем он излагает свойства цепной линии и составляет таблицы для построения этой кривой. Там же он указывает, что эта кривая, повернутая вокруг горизонтальной оси, лучше всего отвечает и очертанию арки постоянного поперечного сечения. Такая арка под действием собственного веса работает на одно только сжатие. Поскольку в его время 30 всеобщем применении были круговые и эллиптические арки, Герстнер занимается вопросом, как нужно распределить по пролету арки нагрузку, чтобы эти кривые, т. е. дуги окружности или эллипса, совпали с кривыми давления. На практике, как он указывает, распределение нагрузки отклоняется от указываемого теорией для идеального случая это значит, что в действительности материал арки подвергается не только сжатию, но и изгибу. Он обращает также внимание на то, что задача эта— статически неопределенная и что возможно построить бесконечное множество кривых давления, удовлетворяющих условиям равновесия и проходящих через различные точки ключевого сечения и пят. Каждой из таких кривых соответствует некоторое значение горизонтального распора Н. Чтобы сделать задачу статически определенной, Герстнер вводит, в заключение, некоторые произвольные допущения относительно положения истинной кривой давления.  [c.256]

Аналогичному же способу решения поддается и задача исследования бруса с начальной кривизной и круглого кольца ). Применение метода Ритца к вычислению прогиба мембраны с использованием мембранно аналогии привело к выводу простых формул для расчета напряжений кручения и изгиба в брусьях различных поперечных сечений ). Тот же метод принес полезные результаты в исследовании колебаний бруса переменного поперечного сечения и прямоугольных пластинок при различных краевых ус .о-виях.  [c.479]

И. И. Мусхелишвили (1932) разработал теорию кручения и изгиба стержней, составленных из различных материалов и спаянных между собой вдоль боковых поверхностей решение этой задачи для случая кручения двух спаянных между собой брусьев из разного материала приведено в его известной монографии (изд. 2 — 1935). И. Н. Векуа и А. К. Рухадзе (1933) изучили кручение круглого цилиндра, армированного круговым стержнем, а также кручение и изгиб составного стержня, сечение которого имеет вид конфокальных эллипсов А. К. Рухадзе (1935) рассмотрел изгиб и кручение составного профиля, образованного эпитрохоидами случай разграничения гипотрохоидами исследовал Г. А. Кутателадзе (1956). Кручение составного стержня с сечением в виде двух круговых сегментов, спаянных по хорде, при помощи биполярных координат рассмотрели В. М. Дзюба и А. Ш. Асатурян (1965).  [c.29]


Длинная цилиндрическая оболочка кругового сечения И всюду одинаковой толщины, очевидно, способна совершать колебания, имеющие характер колебаний изгиба, при которых ось остается в покое и поверхность сохраняет цилиндрическую форму, движение же в каждой точке перпендикулярно к образующей. В результате эту задачу можно рассматривать как двумерную, и решение ее связано с рассмотрением потенциальной и кинетической энергий при различных деформациях сечения. Такой же метод пригоден для анализа колебаний кольца, образованного вращением небольшой замкнутой площади вокруг внешней оси ( 192а).  [c.401]

ШИ относительных перемещений точек при деформации можно пренебречь. Остальные гипотезы, к-рыми пользуется С. м., здесь устранены первоначально в развитии теории упругости они или подтверждаются вполне, или частью, с известным приближением, или отвергаются в связи с анализом отдельных деформаций. Элементарные теории растяжения, кручения круглых брусков, чистого изгиба вполне согласуются с теорией упругости. Изгиб в присутствии срезывающих сил, как оказывается, подчиняется закону прямой линии гипотеза Навье), но не закону плоскости (гипотеза Бернулли). Касательные напряжения при изгибе распределяются по закону параболы, но только в тех сечениях, которые имеют незначительную толщину при большой высоте (узкие прямоугольники). В других сечениях закон распределения касательных напряжений совершенно иной. Для балок переменного сечения, к к-рым в элементарной теории прилагают закон прямой линии и параболы, теория -упругости дает другие решения в этих решениях значения напряжений и деформаций гораздо выше, чем по элементарной теории следует. Общепринятый способ расчета пластин по Баху как обыкновенных балок не оправдывается теорией упругости. Ф-лы С. м. для кручения некруглых стержней не соответствуют таковым в теории упругости. Теория изгиба кривых стержней решительно не совпадает с элементарной теорией Баха-Баумана, но результаты расчета по строгой теории и на основании гипотезы плоских сечений достаточно близки. Поставлена и разрешена для ряда случаев задача о распределении местных напряжений (в местах приложения нагрузки или изменения сечения), к-рая совершенно недоступна теории С. м. Вопрос об устойчивости деформированного состояния, элементарную форму которого представляет в С.м. продольный изгиб, получил в теории упругости общее решение Бриана (Bryan), Тимошенко и Динника. Помимо многочисленных форм устойчивости стержня, сжатого сосредоточенной силой, изучены также явления устойчивости стержней переменного сечения под действием равномерно распределенных сил и другие явления устойчивости балок при изгибе, равномерно сжатой трубы, кольца, оболочек, длинного стержня при скручивании и пр. Теория упругого удара— долевого, поперечного—занимает большое место в теории упругости и включает все большее и большее чис-чо технически важных случаев. Теория колебаний получила настолько прочное положение в теории упругости и в практи-тсе, что методы расчета на ко.чебания проникают область С. м., конечно в элементарном виде. Изучены распространение волны в неограниченной упругой среде (решение Пуассона и Кирхгофа), движение волны по поверхности изотропной среды (решение Релея), волны в всесторонне ограниченных упругих системах с одной, конечно многими и бесконечно многими степенями свободы. В связи с этим находятся решения, относящиеся к колебаниям струн, мембран и оболочек, различной формы стержней, пружин и пластин.  [c.208]


Смотреть страницы где упоминается термин О решении задачи изгиба для различных сечений : [c.521]    [c.288]    [c.7]    [c.188]   
Смотреть главы в:

Некоторые задачи математической теории упругости Изд5  -> О решении задачи изгиба для различных сечений



ПОИСК



336 —-задачи об изгибе с задачей



© 2025 Mash-xxl.info Реклама на сайте