Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тема III. Основы аналитической механики

Курс МФТИ складывался в значительной мере под влиянием Феликса Рувимовича Гантмахера. Ему принадлежат многие методические находки, которые легли в основу принятого в МФТИ построения курса. Неожиданная и преждевременная кончина не позволила Феликсу Рувимовичу самому написать задуманный им курс классической механики. Он успел написать лишь часть этого курса, содержащуюся в его книге Лекции по аналитической механике , которая вышла первым изданием (1960 г.) при его жизни и вторым изданием (1966 г.) посмертно. Влияние Феликса Рувимовича на остальные разделы курса также столь велико, что эта книга по праву должна была бы быть подписана двумя авторами. Я не счел возможным сделать это только потому, что не был убежден, что Ф. Р. Гантмахер согласился бы со всеми теми изменениями, которые были внесены в этот курс за последние годы.  [c.8]


В своем трактате Общие принципы движения жидкости (1755 г.) Эйлер впервые вывел систему дифференциальных уравнений движения идеальной, т. е. абстрактной, лишенной трения, жидкости, положив тем самым начало аналитической механике оплошной среды. Эйлеру механика жидкостей обязана введением понятия давления в точке движущейся или покоящейся жидкости, а также выводом уравнения сплошности или непрерывности жидкости формулировкой закона об изменении количества движения и момента количества движения применительно к жидким и газообразны.м средам выводом турбинного уравнения первоначальными основами теории корабля, а также выяснением вопроса о происхождении сопротивления жидкости движущимся в ней телам.  [c.10]

Я начинаю рассказ с известной характеристики работ Галилея , данной Лагранжем в его Аналитической механике Эта наука (динамика) целиком обязана своим развитием новейшим ученым, и Галилей заложил первые ее основы. До Галилея силы, действующие на тела, рассматривали только в состоянии равновесия, и, хотя ускоренное падение твердых тел и криволинейное движение брошенных тел не могли приписать какой-либо причине, кроме постоянного действия тяжести, тем не менее никому до Галилея не удалось определить законов этих повседневных явлений, несмотря на то что причина их столь проста. Галилей первый сделал этот важный шаг и этим открыл новый и необозримый путь для прогресса механики.. .. Однако среди современников работы по динамике не принесли  [c.238]

Структурные аналогии ряда тем аналитической механики выступают ярче, если в основу выводов положить формулу первой вариации функционала. На этом пути структурно объединяются такие, казалось бы, разные вопросы, как вариационный принцип Гамильтона—Остроградского, принцип Эйлера—Лагранжа, законы сохранения мер движения в ньютоновской механике - сохранение количества движения, механической энергии и момента количества движения, закон сохранения обобщенного импульса и обобщенный закон сохранения энергии в аналитической механике, интегральные инварианты динамики, уравнения Гамильтона — Якоби и др.  [c.281]

Автор этой главы достаточно критически относится к увлеченности многих преподавателей и инженеров-исследователей только численными методами изучения процессов движения. В современном вузовском преподавании аналитические методы в сочетании с глубоким анализом физической сущности проблем играют колоссальную роль. Вычислительная машина должна быть помощником исследователя, но не должна управлять им. Как справедливо указывает в одной из статей Р. Беллман, машина не может привести к развитию новых методов решения сложных проблем . Поэтому в вузовском преподавании при подготовке молодых исследователей — будущего науки нашей страны — необходима разумная система пробуждения и совершенствования творческого интеллекта учащихся в сочетании (сообразуясь) с возможностями современных электронно-вычислительных машин. Не видеть успехов машинной математики в наши дни нельзя, и весь коллектив советских механиков обязан сформировать такую методику преподавания механики, которая закладывала бы правильные основы развития разума искателей нового, с тем чтобы обеспечить в беге времени интеллектуальное превосходство наших исследователей, обучающихся в вузах первой в мире социалистической державы.  [c.50]


Квантовая статистика ставит математике и некоторые новые задачи так, обоснование своеобразных принципов статистических расчетов, лежащих в основе новых статистик Бозе-Эйнштейна и Ферми-Дирака, потребовало математических рассуждений, принципиально (а не только по аналитическому аппарату) отличных от всех тех, с какими имела дело классическая статистическая механика. Тем не менее можно утверждать, что переход от классических систем к квантовым в основном не создал каких-либо существенно новых математических трудностей любой метод обоснования статистической механики классических систем в принципе может быть применен и к системам квантовым, требуя для достижения этой цели только расширения аналитического аппарата, которое может иногда вызвать небольшие трудности технического характера, но в принципиальном плане не создает новых математических задач там, где мы ранее оперировали интегралами, приходится иметь дело с конечными суммами или рядами, а непрерывные вероятностные распределения заменяются дискретными, для которых имеют место вполне аналогичные предельные теоремы.  [c.8]

Вместе с тем, установленная Лагранжам взаимосвязь симметрия — сохранение не была им явно сформулирована в виде некоторого общего результата. Если Ньютон постулировал с самого начала определенные свойства пространства и времени, то Лагранж не высказывался непосредственно о тех принципах пространственно-временной симметрии, которые наряду с общей формулой динамики были им неявно положены в основу аналитической механики. С одной стороны, это было связано с общей тенденцией, характерной для механики XVIII и даже первой половины XIX в., избегать обсуждения аксиоматических основ механики с другой — с известной переоценкой динамических законов типа основных уравнений движения механики и недооценкой принципов пространственно-временной симметрии. Рассмотрение законов сохранения как первых интегралов уравнений движения механических систем могло поддерживать иллюзию, что взаимосвязь симметрия — сохранение имеет лишь формально-вычислительное значение и в своей общности и фундаментальности существенно уступает самим уравнениям движения или иной форме динамического закона (при этом не-оол редко упускалось из виду, что структура уравнений сама, в свою очередь, базировалась на определенных представлениях о свойствах симметрии пространства и времени).  [c.230]

Как в этот период, так и после первого издания своего трактата Лагранж занимался небесной механикой и получил в этой области немало важных результатов по расчету орбит планет и комет, по общим методам решения уравнений, определяющих двин<ение тел Солнечной системы. В Аналитическую механику включены многие замечательные достижения Лагранжа, но она вошла бы в историю нашей науки даже без них, благодаря оригинальности системы изложения и единству метода, использованного ее автором. В предисловии к первому изданию Лагранж с полным основанием писал, что существует уже много трактатов по механике, но план настоящего трактата является овершенно новым. Я поставил себе целью свести теорию механики и методы решения связанных с нею задач к общим формулам, простое развитие которых дает все уравнения, необходимые для решения каждой задачи . И с законным удовлетворением Лагранж добавил к этому Я надеюсь, что способ, каким я постарался этого достичь, не оставляет желать чего-либо лучшего . Поэтому особенно поучительно познакомиться с тем, на основе каких исходных положений и какими средствами Лагранж создал стройную систему своей (аналитической) механики.  [c.200]

Первые серьезные для своего времени исследования колебаний восходят к XVII веку. Они были выполнены Г. Галилеем и затем X. Гюйгенсом и касались лишь маятника. В XVIII веке, с развитием математического анализа и теоретической механики, интерес к колебательным процессам уже подкрепляется основательной теоретической базой. Так, Л. Эйлер в России занимается изучением колебаний корабля в связи с вопросом о его устойчивости, а Ж. Даламбер во Франции работает над исследованием колебаний струны. В конце XVIII века Лагранж в своем замечательном труде Аналитическая механика создает мощный математический аппарат в виде хорошо известных теперь уравнений движения в обобщенных координатах. Рассмотрев с его помощью некоторые задачи теории колебаний, приводящиеся к интегрированию линейных дифференциальных уравнений, он тем самым заложил основы линейной теории колебаний.  [c.7]


Ньютон (1642—1727). На основе более ранних исследований Леонардо да Винчи и Галилея Ньютоном были сформулированы основные уравнения движения. Были введены такие фундаментальные понятия, как импульс и действующая сила. Ньютонов закон движения решил задачу о движении изолированной частицы. Он мог также рассматриваться как общее решение задачи о движении, если только согласиться разбивать любую совокупность масс на изолированные частицы. Возникла, однако, трудность, связанная с тем, что не всегда были известны действующие силы. Эта трудность была частично преодолена с помощью третьего закона Ньютона, провозгласившего принцип равенства действия и противодействия. Это исключило неизвестные силы в случае движения твердого тела, однако движение механических систем с более сложными кинематическими условиями не всегда поддавалось ньютонову анализу. Последователи Ньютона считали законы Ньютона абсолютными и универсальными законами природы, интерпретируя их с таким догматизмом, к которому их создатель никогда бы не присоединился. Это догматическое почитание ньютоновой механики частиц помешало физикам отнестись без предубеждения к аналитическим принципам, появившимся в течение XVHI века благодаря работам ведущих французских математиков этого периода. Даже великий вклад Гамильтона в механику не был оценен современниками из-за преобладающего влияния ньютоновой формы механики.  [c.387]

Теория. оболочек лежит в основе расчетов на прочность тонкостенных конструкций, в том числе сложных и ответственных отсеков и агрегатов ракет. ( бщая теория основывается на гипотезах, позволяющих свести сложные трехмерные задачи механики к двумерным. Однако уравнения равновесия и геометрические соотношения при этом оказываются весьма громоздкими. Их можно упростить, если рассматривать наиболее распрдстраненные в ракетной технике оболочки вращения. Тем не менее решить задачи аналитически удается лишь в отдельных частных случаях. Наиболее простой вариант — б е з м о-ментная теория оболочек. Она широко применяется при расчетах, позволяя в большинстве случаев получить простые решения. Более сложные подходы требуют создания численных алгоритмов расчета.  [c.127]

Вместе с тем глубине исследования пластичности в физическом ее аспекте совершенно не отвечает состояние теории явления. Аналитическое рассмотрение проблемы не выходит за рамки описания конкретных моделей деформации, вследствие чего попытки выхода на макроскопический (инженерный) уровень задачи фактически даже не предпринимаются. В то же время в представлениях о пластичности, ра виваемых и механиками, получили распространение три основных подхода — деформационная теория, модель течения и концепция скольжения. Две первых откровенно феноменологические и по своему характеру являются интерполяционными. С их помощью без дополнительных предположений в основном удается описывать лишь те факты, на основе которых производится калибровка соответствующих уравнений. Сколько-нибудь существенной предсказательной ценно-стьк ни деформационная теория, ни теория течения не обладают. Этот их недостаток заложен уже в исходных принципах названных концепций, поскольку при формулировке определяющих соотношений заведомо пренебрегают физическими механизмами формирования свойств.  [c.7]


Смотреть страницы где упоминается термин Тема III. Основы аналитической механики : [c.208]    [c.224]    [c.67]   
Смотреть главы в:

Задачи и упражнения по классической механике  -> Тема III. Основы аналитической механики



ПОИСК



Аналитическая механики

Механика аналитическая

Основы аналитической механики



© 2025 Mash-xxl.info Реклама на сайте