Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эксплуатация электрохимической защиты

Многолетний опыт проектирования и эксплуатации электрохимической защиты таких резервуаров показы-  [c.28]

ПРОЕКТИРОВАНИЕ, СТРОИТЕЛЬСТВО И ЭКСПЛУАТАЦИЯ ЭЛЕКТРОХИМИЧЕСКОЙ ЗАЩИТЫ ОТ КОРРОЗИИ  [c.160]

Опыт эксплуатации электрохимической защиты на газопроводе Саратов — Москва показал целесообразность широкого применения протекторных и катодных установок с выпрямителями.  [c.209]

Данные о штатах службы эксплуатации электрохимической защиты с разделением их по профессиям и должностям. Они приводятся в разделе обеспечения производства кадрами экономической части комплексного технического проекта предприятия, здания или сооружения и выделяются отдельной строкой.  [c.55]


НАЛАДКА И ЭКСПЛУАТАЦИЯ ЭЛЕКТРОХИМИЧЕСКОЙ ЗАЩИТЫ  [c.161]

ЭКСПЛУАТАЦИЯ ЭЛЕКТРОХИМИЧЕСКОЙ ЗАЩИТЫ  [c.163]

При анализе условий эксплуатации конструкции уточняют сроки и режим функционирования объекта состав, давление, температуру, влажность рабочих сред и скорость их движения технологию ингибиторной защиты и режим электрохимической защиты (ЭХЗ) методы и результаты контроля коррозионного  [c.157]

При проектировании электрохимической защиты трубопровода следует иметь в виду, что большее число изолирующих фланцев на трубопроводе значительно усложняет эксплуатацию трубопровода и средств защиты. Неправильный выбор может сделать применение изолирующих фланцев не только бесполезным, но и вредным, так как пропорционально числу фланцев увеличивается число местных анодных зон. Анодные зоны устраняют присоединением к трубопроводу заземлённых токоотводов, а также шунтированием фланцев регулируемым сопротивлением.  [c.25]

Важнейшее условие эффективности электрохимической защиты — поддержание защитных критериев непрерывно по всей поверхности защищаемого сооружения и непрерывно в течение всего срока его эксплуатации. Следует отметить, что единственный критерий защиты — это потенциал сооружения. Плотность защитного тока практически либо не поддается контролю, либо контролируется с помощью установок для измерения поляризационного потенциала.  [c.74]

Опыт эксплуатации показывает, что срок службы анодов любой конструкции редко превышает 10 лет. Дело в том, что службы по эксплуатации средств электрохимической заш,иты, стремясь к 100%-ой защищенности определенных коммуникаций, добиваются этого за счет повышения потенциала на отдельных сетях и увеличения общего защитного тока. Выпускаемые промышленностью СКЗ мощностью Зч-5 кВт закладываются в проекты электрохимической защиты, и строительные организации, осуществляя защиту отдельных сетей, создают в земле блуждающие токи огромной величины, которые усугубляют процесс коррозии сооружений из чугуна и железобетона. Наибольший эффект применения катодной защиты достигается для магистральных нефтегазопроводов с хорошей изоляцией  [c.14]

Опыт эксплуатации показывает, что эффективными средствами повышения КПД устройств электрохимической защиты являются применение полупроводниковых запирающих устройств, использование метода и устройств импульсной катодной защиты.  [c.72]

Многолетний опыт эксплуатации, а также исследование различных устройств электрохимической защиты подземных сооружений показали, что в этом вопросе имеются серьезные организационные и технические трудности.  [c.82]


В случаях I и П защита обеспечивается катодной поляризацией, а в случаях HI и IV—анодной. При этом защитный ток в случаях I и III может подводиться без регулирования, тогда как в случаях II и IV должно осуществляться регулирование потенциала. Разработка надежных в эксплуатации и достаточно мощных автоматических защитных преобразователей с регулированием потенциала создала предпосылки для применения электрохимической защиты во многих областях (см. раздел 20).  [c.62]

Применять методы электрохимической защиты от коррозии начали в первую очередь в химической промышленности около 15 лет назад вначале нерешительно, как это было и с применением катодной защиты подземных трубопроводов около 30 лет назад. Препятствие к более широкому применению заключалось главным образом в том, что внутренняя защита должна в большей мере выполняться по индивидуальным проектам, чем простая наружная защита подземных сооружений. В связи с возросшей важностью обеспечения повышенной надежности производственных установок, с ужесточением требований к коррозионной стойкости и укрупнением деталей и узлов установок начал проявляться интерес к электрохимической внутренней защите. Хотя на вопрос об экономичности защиты нельзя дать общего ответа (см. раздел 22.4), все же очевидно, что расходы на электрохимическую защиту будут меньше расходов на высококачественную и надежную футеровку (на покрытия) или на коррозионностойкие материалы. При этом анализе нельзя не отметить, что наде кная эксплуатация очень крупных выпарных аппаратов для щелочных растворов вообще стала возможной только благодаря применению внутренней анодной защиты, поскольку достаточно эффективный отжиг для снятия внутренних напряжений крупных резервуаров практически неосуществим, а конструктивные и эксплуатационные напряжения вообще не могут быть устранены.  [c.400]

В некоторых случаях благодаря электрохимической защите удается сохранить старые сооружения, которые иначе пришлось бы обновлять (заменять новыми) вследствие коррозионных повреждений (образования раковин, сквозной или язвенной коррозии, образования коррозионных трещин и т.д.). В отдельных случаях электрохимическая защита вообще впервые сделала возможной эксплуатацию некоторых установок при использовании экономичных материалов.  [c.413]

Справочник содержит необходимые сведения для решения основных практических задач по проектированию, сооружению и эксплуатации устройств электрохимической защиты подземных металлических сооружений от коррозии в нем даны методические указания по проведению изысканий, расчетам, основные сведения по электрозащитным установкам, измерительным приборам, строительным механизмам, специальным устройствам, а также схемам электрохимической защиты.  [c.2]

НАЛАДКА И ЭКСПЛУАТАЦИЯ СИСТЕМ ЭЛЕКТРОХИМИЧЕСКОЙ ЗАЩИТЫ 1. Наладка систем электрохимической защиты, приемка работ  [c.209]

Эксплуатация систем электрохимической защиты  [c.211]

Обеспечение надежной защиты от коррозии трубопроводов водоснабжения особенно водопроводов, находящиеся длительное время в эксплуатации без защиты или с недостаточной защитой является достаточно сложной задачей. В этом случае, с учетом возрастающих затрат, важное значение имеет правильный выбор средств и очередности применения электрохимической защиты.  [c.50]

Методами математической статистики с использованием параметра удельного количества аварий технологических трубопроводных систем и разработанных критериев опасности эксплуатации научно обосновано их разделение на участки с различной природой разрушения (почвенная коррозия, электрокоррозия) и степенью опасности. Это позволило установить очередность проведения противокоррозионных мероприятий с рациональным выбором способа электрохимической защиты на стадиях проектирования и эксплуатации.  [c.107]

Таким образом, в растворах азотной кислоты при катодной поляризации нержавеющие стали могут переходить в активное состояние и растворяться с высокими скоростями. Однако более сильная катодная поляризация (до более отрицательных потенциалов) может снижать скорость коррозии нержавеющих сталей в этих условиях за счет эффекта катодной электрохимической защиты. Результаты этих опытов указывают на необходимость при эксплуатации нержавеющих сталей учитывать возможность нарушения их пассивного состояния в области относительно отрицательных значений потенциалов.  [c.70]


Применение цинковых или кадмиевых прокладок, покрытие цинком или кадмием медных сплавов при контакте их со сталью, а также цинкование или кадмирование стальных деталей при контакте с алюминиевыми сплавами, по-существу, также основано на принципе электрохимической защиты. В обоих случаях в систему медь — железо и железо — алюминий включают третий анод (цинк или кадмий), смещающий потенциал к таким значениям, при которых коррозия контактирующих анодов уменьшается или оказывается равной нулю . Этим методом широко пользуются в технике, что было иллюстрировано выше на конкретных примерах защиты магниевых и алюминиевых сплавов, а также судостроительных конструкций. В частности сообщается, что металлизация судостроительных сталей цинком обеспечивает надежную их эксплуатацию в контакте с алюминиевыми сплавами в течение длительного времени (5—8 лет).  [c.198]

Возможность применения электрохимической защиты для борьбы с питтинговой коррозией нержавеющих сталей подтверждается успешной эксплуатацией нержавеющих сталей в контакте с малоуглеродистыми и низколегированными судостроительными сталями в морских конструкциях. Нержавеющая сталь, находящаяся в контакте с цинком или магнием, также защищается электрохимически от питтинговой коррозии.  [c.371]

Металлические цинк и алюминий используются в мелкодисперсном виде для окраски. При этом цинк может раствориться, и при эксплуатации в морской воде возможны вздутия покрытия. Хотя цинк широко применяется и сам по себе, однако для создания специализированных защитных покрытий он смешивается также с другими защитными материалами, например с силикатом натрия, обеспечивая ингибирование коррозии в присутствии кислорода и электрохимическую защиту после расходования силикатного ингибитора. Алюминиевые краски содержат очень тонкие чешуйки  [c.160]

Методы испытаний (контроля), другие вопросы временной противокоррозионной защиты Электрохимическая защита Термины и определения Условия эксплуатации Общие нормы и правила проектирования Общие требования к выбору и применению средств и методов электрохимической защиты  [c.129]

Общие методы включают выбор и разработку новых свариваемых коррозионно-стойких конструкционных материалов, отвечающих требованиям технологической и эксплуатационной прочности рациональное конструирование, технологию изготовления и эксплуатацию сварного изделия применение защитных покрытий — металлических (путем химической и электрохимической обработки поверхности), неметаллических органических и неорганических применение методов торможения коррозии — обработка среды, ингибирование, электрохимическая защита.  [c.502]

Влияние технологических и конструкционных параметров на поведение металла в условиях анодной защиты исследовано недостаточно. Вместе с тем, имеющиеся данные свидетельствуют, что это влияние может быть значительным и имеет первостепенное значение для выбора типа конструкции и параметров анодной электрохимической защиты. В данном разделе кратко рассматриваются имеющиеся данные по применению в одной конструкции различных сталей и сварных соединений, а также влиянию гидродинамических условий эксплуатации.  [c.132]

Снижение температуры электролита уменьшает склонность сталей к питтинговой коррозии и глубину ее проникновения. Учитывая, что нарушение пассивного состояния нержавеющих сталей хлор-ионами зависит от потенциала, весьма эффективной оказывается электрохимическая защита, удерживающая потенциал стали на более отрицательном уровне, чем значение критического потенциала (-J-0,3 в для электролита, содержащего кислород, и -1-0,2 в для обескислороженного электролита). Опыты показывают, что эксплуатация нержавеющих сталей в море в контакте с обычными малоуглеродистыми сталями, имеющими потенциал —0,3 в, полностью исключает питтинговую коррозию нержавеющих сталей.  [c.311]

Укрупненно определяются затраты на строительство и штаты службы эксплуатаций системы электрохимической защиты сооружений.  [c.53]

В состав рабочих чертежей входят технологическая часть, электроснабжение оборудования, строительная часть, автоматизация и телемеханизация электрических измерений при эксплуатации системы электрохимической защиты от коррозии подземных сооружений.  [c.55]

Целесообразность применения того или иного способа борьбы с коррозией подземных сооружений может быть определена в результате сопоставления данных по длительной эксплуатации защищенных и незащищенных подземных сооружений. Однако в СССР фактически не имеется данных по коррозии незащищенных газопроводов, так как все газопроводы уже в период строительства подвергались защите битумными противокоррозионными покрытиями. Первый магистральный газопровод Саратов — Москва был обеспечен на шестом году эксплуатации электрохимической защитой, а последующие газопроводы Дашава — Киев, Ставрополь— Москва оборудованы установками катодной защиты непосредственно по окончании строительства на первый и второй годы эксплуатации. Это позволило обеспечить безаварийную работу газопроводов в течение длительного срока.  [c.206]

В последние годы электрохимическая защита, в основном катодная защита внешним током, начинает применяться и в практике эксплуатации аппаратов химических производств. Так, из-вестн1)1 случаи защиты от коррозии этим способом конденсаторов, холодильников, теплообменников и др.  [c.305]

Коррозионные обследования обсадных колонн проводят для оценки коррозионного состояния их (как по глубине, так и по площади месторождения), определения параметров электрохимической защиты, выявления причин негер-метичности обсадных колонн в процессе эксплуатации и контроля защищенности.  [c.127]


Для пропаганды передовых методов и средств защиты металлоконструкций от коррозии при Башкирском областном комитете КПСС, областном совете профсоюзов, областном совете НТО, Башкирском филиале Академии наук СССР, Башкирском центре научно-технической информации и пропаганды проводятся межотраслевые научно-практические конференции. Министерство жилищного и коммунального хозяйства БАССР регулярно организует учебу по повышению квалификации специалистов, занимающихся эксплуатацией средств электрохимической защиты подземных газопроводов по всем городам Башкирии. Обучение проводится с отрывом от производства по 60-часовой программе. В начале каждого года составляются планы работ Республиканской и городских междуведомственных антикоррозионных комиссий и рассылаются руководителям городских и секционных комиссий, которые контролируют ход выполнения принятых обязательств по кварталам.  [c.4]

Третьей группой факторов, определяющих долговечность изделия, являются эксплуатационные. К ним относятся агрессивность среды, ее температура, давление, скорость перемещения, наличие активаторов или пас-сиваторов коррозионного процесса и др. Поскольку условия эксплуатации. из-за необходимости обеспечения требуемых технологических параметров менять практически невозможно, радикальными способами повышения коррозионно-механической стойкости в этом случае являются ингибирование рабочих сред и электрохимическая защита оборудования. Ингибиторы коррозии известны давно и широко применяются на практике. Однако не всякие ингибиторы коррозии могут быть эффективными ингибиторами коррозионной усталости. Целенаправленный синтез ингибиторов коррозионно-механического разрушения начат сравнительно недавно, поэтому число работ, посвященных их влиянию на коррозионную усталость металлов, крайне ограниченно.  [c.4]

Таким образом, целью работы является разработка методов и средств обеспечения долговечности и безопасной эксплуатации технологических трубопроводов на основе повышения их коррозионной стойкости, коррозионномеханической прочности и эффективности активных методов электрохимической защиты от коррозии  [c.5]

Первые две группы стандартов развития не получили. Они касаются организационно-методических вопросов и общих требований к выбору конструкционных материалов. Остальные группы содержат требования к наиболее крупным методам и средствам защиты от коррозии металлические и неметаллические неорганические покрытия (3), органические покрытия (4) временная противокоррозионная защита (5) электрохимическая защита (6) защита от старения (7) от воздействия биофакторов (8). Каждая из групп включает стандарты по терминам и определениям, классификации и обозначению, условиям эксплуатации, требованиям к выбору покрытий или средств защиты, их контролю и оценки эффективности. Завершает систему группа (9) по общим вопросам коррозии и защиты металлов. Таким образом, ЕСЗКС представляет стройную комплексную систему, насчитывающую в настоящее время более ста стандартов. В прил. 1 содержатся наименования, краткая аннотация и срок действия основных из действующих стандартов ЕСЗКС.  [c.134]

Критериями электрохимической защиты являются защитный потенциал и защитная плотность тока. Стационарный потенциал стали в природных коррозионных средах в среднем составляет 0,440 В. В табл. 9.8 и 9.9 приведены значения защитных потенциалов некоторых металлов в природных коррозионных средах и необходимая плотность тока с учетом состояния покрытия. Наиболее часто используется контроль по значениям потенциалов, Плотность тока в процессе эксплуатации может меняться из-за нарушения изоляции защищаемой конструкции (при совместном применении) и из-за образования на катодных поверхностях ме-таллоосадков. Последние образуются в прикатодном Коррозионная диаграм-  [c.281]

Развитие комбинированных методов защиты позволяет перейти к разработке защитных комплексов, включающих в себя, одновременно с полимерными покрытиями, ингибиторы коррозии, элементы электрохимической защиты износостойкие покрытия и конструкционные полимеры, металлические покрытия, поверхностное упрочнение де. талей, которые совместно дают возможность создать оптимальную схему защиты, свести до минимума коррозионномеханические разрушения аппаратов в пищевой промышленности и обеспечить их длительную и бесперебойную эксплуатацию.  [c.27]

Для правильной эксплуатации установок электрохимической защиты требуется нахождение количественной зависимости защитного эффекта от плотности внешнего тока, что может быть сделано, исходя из следующих допущений 1) корродирующее сооружение имеет одинаковый потенциал по всей поверхности, что правомерно для полностью заполяризированных систем, 2) внешний ток распределяется равномерно по поверхности корродирующей конструкции.  [c.150]

Потери от коррозии трубопроводов достигают примерно от 2 до 5% Ил общей стоимости. Расходы на электрохимическую защиту, включая эксплуатацию и текущий контроль, составляют 1—2% и не превышают 3% от стоимости установок. По американским данным, стоимость установок с магниевыми протекторами незначительно отличается от стоимости установок с катодной защитой данные по десятилетней эксплуатации показали, что стоимость а - г защитного тока от магниевых протекторов составл5 ет 15—20 долларов, а от катодов— 10—20 долларов [51—53]. Затраты на защиту трубопроводов увеличиваются вместе с расходом тока по мере снижения сопротивления противокоррозионной изоляции.  [c.814]

При выборе средств электрохимической защиты от коррозии на стадии проектирования подземных сооружений не всегда можно точно определить все исходные параметры. В соответствии с действующими нормами в таких случаях предусматривают разработку рабочих чертежей электрохимической защиты подземных сооружений от коррозии после укладки их в грунт по данным пробных включений защитных устройств. Для того чтобы включить устройства защиты в работу до ввода в эксплуатацию подземных сооружений, целесообразно проектирование средств электрохимической защиты на стадии проектирования подземных сооружений с учетом установки резервных защитных средств. При таком подходе можно своевременно вводить в строй сооружения и систему защиты при достижении высоких технико-экономических показателей строительства и системы защиты в целом. Резервы используются в процессе наладки и эксплуатации. Это использование в основном заключается в регулировке защитных устройств. Дополнительные работы по защите в послестроительный период, необходимость в которых также мол ет возникнуть, как правило, существенно не влияют на технико-экономические показатели.  [c.119]

При проектировании электрохимической защиты до укладки сооружений рекомендуется использовать в качестве аналогов данные по уложенным в районе предполагаемого строительства сооружениям, либо приближенно их оценивать, исходя из ориентировочных значений сопротивлений. В процессе проектирования при выборе мощности электрозащитной установки и длины защитной зоны необходимо учитывать, что в первые годы эксплуатации происходит существенное старение изоляционных покрытий, и выбирать значения сопротивлений в соответствии с установившимся состоянием изоляции. Правильный учет при проектировании установившихся значений переходного и поляризационного сопротивлений сооружение — земля позволяет создать необходимый резерв мощности электро защитной установки. При наладке и эксплуатации принятые величины дoллtны корректироваться соответствующими  [c.121]



Смотреть страницы где упоминается термин Эксплуатация электрохимической защиты : [c.54]    [c.69]    [c.160]    [c.211]    [c.54]   
Смотреть главы в:

Защита силовых кабелей от коррозии  -> Эксплуатация электрохимической защиты



ПОИСК



Глава тринадцатая. Наладка и эксплуатация электрохимической защиты

Наладка и эксплуатация систем электрохимической защиты

ПРОЕКТИРОВАНИЕ, СТРОИТЕЛЬСТВО И ЭКСПЛУАТАЦИЯ ЭЛЕКТРОХИМИЧЕСКОЙ ЗАЩИТЫ ОТ КОРРОЗИИ Проектирование электрохимической защиты

Эксплуатация систем электрохимической защиты

Электрохимическая защита

Электрохимический



© 2025 Mash-xxl.info Реклама на сайте