Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Геометрические характеристики обработанной поверхности

Геометрические характеристики обработанной поверхности  [c.150]

К геометрической характеристике обработанной поверхности относятся шероховатость поверхности (микронеровности), ее форма (макрогеометрия), волнистость и взаимное расположение направления следов механической обработки и направления движения детали при работе.  [c.76]

Различают следующие характеристики точности точность размеров детали, точность геометрической формы обработанной поверхности, точность по микрогеометрии (шероховатости поверхности). точность по расположению поверхности относительно других поверхностей деталей.  [c.14]


Условия механической обработки определяют чистоту обработанной поверхности, т. е. геометрическую характеристику степени неровности поверхности  [c.17]

Износ. Механизм износа эластомерных уплотнений весьма сложен и определяется комплексом физико-механических свойств и геометрическими характеристиками фрикционной пары. По И. В. Крагельскому [26, 52] характер и интенсивность износа зависят от вида нарушения фрикционных связей. В зависимости от прочности возникающей между эластомером и твердым телом связи различают пять видов нарушения единичных адгезионных связей, из которых вытекают три основных вида износа 1) адгезионный, приводящий к своеобразному скатыванию или намазыванию поверхностного слоя эластомера 2) абразивный, вызванный микрорезанием эластомера острыми выступами поверхности или частицами загрязнений 3) усталостный, вследствие многократного деформирования поверхностных слоев эластомера выступами неровностей контртела. При скольжении в эластомере перед выступом микронеровности возникает зона сжатия, а позади него — зона разрежения. Если относительное внедрение hir велико h — глубина внедрения г — радиус неровности), происходит микрорезание. Если hIr мало, происходит многократная деформация поверхностных слоев эластомера, приводящая к постепенному усталостному износу. Это основной вид износа уплотнений при трении по хорошо обработанным поверхностям и наличии смазки. Износ материалов оценивается следующими основными характеристиками удельным износом i и интенсивностью износа У, связанными  [c.79]

Как правило, надрезанные образцы разрушаются постепенно, причем с увеличением остроты надреза эта постепенность растет. В этом смысле относительная продолжительность работы надрезанного образца при повторном нагружении в области разрушения (т. е. с трещиной) может составить около 40% полного числа циклов, в то время как у гладкого трещина возникает незадолго до полного разрушения (примерно после 90%). У хрупких материалов (типа стекол) роль надрезов часто играют поверхностные дефекты, поэтому при тщательно обработанной поверхности, что было показано в исследованиях Ф. Ф. Витмана и др., такие образцы приближаются по поведению к бездефектным, например, сверхвысокопрочные стекла [10, с. 340]. Чувствительность к надрезу является более частной характеристикой, сильнее зависящей от геометрических параметров надреза, чем  [c.104]

Существует точка зрения, что точность геометрической формы является одной из характеристик качества обработанной поверхности, так называемой макрогеометрии поверхности, а сами отклонения от геометрической формы называют макронеровностью.  [c.153]


Качество обработанной поверхности характеризуется как точностью ее изготовления по отношению к размерам, заданным конструктором, так и ее физико-механическими свойствами и неровностью, полученными в результате срезания с нее стружки, т. е. в результате технологического процесса ее изготовления. Физико-механические свойства обработанных поверхностей определяются в основном прочностью, твердостью, остаточными напряжениями, микроструктурой, химическим составом, износоустойчивостью и коррозионной устойчивостью. Неровность же поверхности определяется макрогеометрией (макронеровностями), волнистостью и микрогеометрией (микронеровностями) и является характеристикой поверхности с точки зрения ее геометрического отклонения от теоретической поверхности, заданной на чертеже.  [c.71]

Опорная площадь может оказаться одинаковой для нескольких поверхностей, обработанных по различным технологическим методам (рис. 1.2.9). Отличие таких поверхностей устанавливают по геометрическим характеристикам отдельных неровностей профиля (микронеровностей) - углам профиля, радиусам кривизны профиля выступа (закругления  [c.67]

Физико-химические свойства материала режущей части инструмента могут оказывать влияние на микрогеометрию обработанной поверхности за счет изменения адгезионных процессов на контактирующих поверхностях и способности режущей кромки инструмента сохранять свой контур в процессе резания. По мере износа режущая кромка оказывает на микрогеометрию обработанной поверхности как чисто геометрическое влияние, так и влияние за счет изменения триботехнических характеристик контактирующих поверхностей.  [c.114]

Во-первых, эта задача может быть решена в дискретной форме, например, по координатам точек, определяющих поверхность Д. В этом случае даже при высокой плотности элементов, задающих поверхность Д, достичь требуемой точности расчета основных дифференциально-геометрических характеристик локальных участков обрабатываемой поверхности бывает трудно. Это отрицательно сказывается на точности обработанной поверхности детали.  [c.26]

Формирование геометрических характеристик рабочих поверхностей деталей. Сечение обработанной поверхности перпендикулярной плоскостью дает профиль микро- и макронеровно-  [c.369]

В качестве основы классификации можно предложить такую градацию скоростей изнашивания, в которой износ за фиксированную продолжительность работы пары, принятую равной Т == 100 ч, соизмерим с высотой неровностей этой поверхности (по характеристике Ra или принадлежности к данному классу шероховатости). Будем считать, что принадлежность к данному классу износостойкости означает, что износ за 100 ч работы равен наименьшему значению Ra (мкм), характерному для обработанной поверхности. Данная классификация приведена в табл. 21. Значения R для каждого класса составляют геометрическую прогрессию со знаменателем ф = 2, Поэтому и скорости изнашивания построены по этому же закону и дают более тонкую градацию, чем классы интенсивности изнашивания (см. табл. 20), где (р = = 10. Износ на величину R означает полное исчезновение технологического и образорание эксплуатационного микрорельефа, поэтому при назначении класса шероховатости исходной поверхности можно регулировать длительность периода микроприработки по отношению к фиксированному значению Т = 100 ч.  [c.270]

Стандартизация допусков на выходные параметры изделий Стандартизация решает многие вопросы, связанные с оценкой и повышением надежности изделий и регламентацией методов их производства, эксплуатации и испытания. Особое место с позиций расчета, прогнозирования и достижения необходимого уровня надежности занимают стандарты, которые регламентируют значения выходных параметров материалов, деталей, узлов и машин и устанавливают классы изделий, отличающиеся по показателям качества. Так, установление классов (степеней) точности (квали-тетов) при изготовлении деталей является регламентацией геометрических параметров изделия, классы шероховатости (ГОСТ 2789—73) разделяют все обработанные поверхности на категории по геометрическим параметрам поверхностного слоя. Стандарты и технические условия на различные марки материалов устанавливают предельные значения или допустимый диапазон изменения их механических характеристик — предела прочности, текучести, усталости, относительного удлинения, твердости и др. Стандарты устанавливают также значения для выходных параметров отдельных деталей сопряжений и механизмов (например, запас прочности конструкций, точность вращения подшипников качения), узлов, систем и машин. Так, например, имеются классы точности для металлорежущих станков, регламентированы тяговые усилия и КПД двигателей, уровень вибраций и температур для ряда машин и т. п. Эти нормативы являются необходимым условием для оценки параметрической надежности изделий и определяют исходные данные при прогнозировании поведения машины в различных условиях эксплуатации.  [c.426]


Система управления качеством продукции включает комплекс мероприятий, направленных на достижение оптимального качества продукции на всех стадиях ее создания и потребления, систематически осуществляемых на предприятиях, в конструкторских, исследовательских и других организациях. Одним из важнейших факторов качества промышленной продукции является качество обработанных поверхностей элементов изделий, включающее в виде важнейшей составной части геометрические характеристики поверхности — шероховатость,. волнистость, некруг-лость и т. д.  [c.3]

Комплекс автоматических линий для обработки вагонных осей. Комплекс АЛ (рис. 26) предназначен для механической обработки сложной, крупногабаритной детали повышенной точности—вагонной оси (рис. 27). По своим геометрическим характеристикам вагонная ось относится к симметричным ступенчатым валам. Основными частями, определяющими служебное назначение вагонной оси, являются шейки под роликовые подшипники и предподступич-ные и нодступичные части (несущие элементы колесной пары в сборе). Поверхности вагонной оси сопрягаются переходными поверхностями и разгружающими канавками, образующими плавные переходы. Точность обработанных поверхностей должна быть 8—9-го ква-литета, параметр шероховатости поверхности 2,5 1,25 мкм. Масса готовой детали 400 кг. Материал — сталь 40. Заготовка получается на станках поперечно-винтового проката. Коэффициент использования металла равен 0,82. В некоторых случаях используют поковки, имеющие существенно большие припуски и коэффициент использования металла 0,78.  [c.60]

Опорная площадь может оказатьея одинаковой для нескольких поверхностей, обработанных различными методами. Отличие таких поверхностей устанавливают по геометрическим характеристикам отдельных микронеровностей каждому методу обработки соответствует определенный диапазон изменения углов профиля и радиусов закругления выступов в зависимости от высоты щероховатости поверхностей.  [c.97]

Сечение обработанной поверхности перпендикулярной плоскостью дает профиль микро- и макронеровностей в определенном направлении. Для каждого вида обработки микропрофиль имеет соответствующие высоту гребещков, глубину впадин, углы (радиус закругления) у вершин гребешков и впадин, а также расстояние между гребешками. В зависимости от способа обработки получается либо определенная направленность в распределении и форме выступов (точение, фрезерование, строгание, шлифование и др.), либо однородная структура поверхности по всем направлениям (электрополирование, гидрополирование и др.). Несмотря на достаточно глубокое изучение влияния технологических факторов на формирование геометрических характеристик поверхности и данных о характере распределения единичных неровностей, еще недостаточно учитывается их влияние на эксплуатационные свойства, что затрудняет решение ряда практических и научных задач, связанных со совершенствованием методов обработки поверхностей и повышением эксплуатационных свойств деталей.  [c.392]

Информация о геометрической характеристике данного отрезка обработанной поверхности дается условным кодом, который в различных системах автоматического управления может быть разным. Так, в системах Ферранти геометрическая характеристика обрабатываемого отрезка указывается условным числом и расположением отверстий в отведенных для этого графах ленты (табл. 1). Подробнее этот код рассмотрен в дальнейшем изложении.  [c.87]

Качество обработанной поверхности любых материалов характеризуется большим количеством различных параметров, которые укруп-ненно можно разделить на две группы физико-химические и геометрические параметры, причем в зависимости от свойств материала и методов обработки наиболее существенное влияние на эксплуатационные характеристики изделий оказывают те или иные из них.  [c.45]

Отклонение реальной поверхности от ее идеального геометрического прототипа по современным представлениям подразделяются на четыре категории погрешность формы, волнистость, шероховатость и субмикрошероховатость. Погрешность формы — одна из основных показателей точности формообразования. Она непосредственно зависит от условий размерной ЭХО и геометрии обработанной поверхности и в меньшей степени служит характеристикой обрабатываемости материала. Волнистость и субмикрошероховатость после размерной ЭХО до настоящего времени практически не изучались в связи с неясностью метрологических и технологических аспектов этого вопроса.  [c.39]

Специфика процесса электрохимической размерной обработки определяет особенности качества обработанной поверхности. Формирование микрорельефа поверхности при ЭХО в отличие от резания в значительной мере определяется при этом химическим составом и структурой обрабатываемого материала, химическим составом, температурой и скоростью движения электролита. Силовой и тепловой факторы практически не участвуют в образовании поверхностного слоя (при отсутствии коротких замыканий, гидравлических ударов и других нарушений процесса ЭХО). Поверхностный слой создается в результате электрохимического растворения материала и химического воздействия среды. Шероховатость обработанной поверхности, являющаяся наиболее важной геометрической характеристикой циклической прочности, в зависимости от условий ЭХО изменяется в широком диапазоне от Кг == 10- 40 мкм до Яг. = 0,02- 0,16 мкм (ГОСТ 2789—73),. Для большинства конструкционных материалов при ЭХО в опти-малъном режиме получить шероховатость в пределах Яа = 0,32 4-2,5 мкм не представляет технологических трудностей [210]. Таким образом, шероховатость поверхности ЭХО не только не уступает основным чистовым методам механической обработки, но и некоторые из них превосходит.  [c.66]


Технологические показатели обработки определяются такими характеристиками, как производительность, энергоемкость, качество обработанной поверхности, точность и стабильность получения геометрических размеров и формы изделия. Например, повыщение производительности размерной ЭХО отверстий в деталях изготовленных из стали 2Х17Н2БШ, с плотностями тока в импульсе / = 30 35 А/см можно объяснить снижением омических потерь и концентрационной поляризации анода. При обработке отверстий при малых зазорах следует ожидать снижения энергозатрат, так как между энергоемкостью процесса и величиной зазора существует зависимость [27]  [c.257]

Достижимая производительность станка и его геометрическая точность зависят как от статических, так и от динамических параметров шпиндельного узла. Особенно сильно влияет динамика шпиндельного узла на шероховатость обработанной поверхности. Динамические параметры узла (резонансная частота, демпфирование системы и амплитуда резонансных колебаний) представлены на рис. 64. В отдельных случаях необходимо определять, кроме того, форму колебаний шпинделя и строить АФЧХ, которая обобщает информацию, содержащуюся в амплитудно-частотной и частотно-фазовой характеристиках. Демпфирование  [c.70]

Рассмотрим геометрические характеристики механически обработанной металлической поверхности. Геометрию металлической поверхности исследуют и изучают в различных масштабах. Если масштаб макроскопический, то п оверхность характеризуется степенью ее волнистости. В пределах каждой волны поверхность в зависимости от способа обработки обладает той или иной шероховатостью (рис. 1.2). Шероховатость в технологии машиностроения моделируют в виде различных геометрических фигур. В этой книге шероховатость принято моделировать пирамидами с квадратным основанием (рис. 1.3). Волнистость измеряется обычными инструментами (линейками, штангенциркулями), шероховатость очерчивают особые приборы — профилографы. Одна из типовых профилограмм показана на рис. 1.4. Каждая пирамида построена из множества разрушенных кристаллитов (рис. 1.5) и оказывается насыщенной огромным числом дефектов решетки. В сумме все разрушенные кристаллические организации и являются теми концентраторами избыточной энергии, за счет которой весьма активно оксидируется металлическая поверхность. Структура двойных электрических слоев повторяется и на поверхности оксидных пленок (рис. 1.6). Воздушная среда цеха обеспечивает адгезионные наслоения на оксид водяных, масляных и пылевых частиц, каждая из которых всегда электрически полярна.  [c.11]

Пути решения проблемы. В проблеме получения больших автоэмиссионных токов, а, следовательно, и использования автокатодов с большой рабочей площадью, решающую роль играет геометрическая неоднородность микровыступов по рабочей поверхности катода. С помощью интегральной технологии удается достичь достаточной равномерности радиусов закруглений эмиттирующих центров, см. например [220, 221]. Однако неизбежно присутствующие при автоэмиссии адсорбция остаточных газов и ионная бомбардировка приводят к неодинаковому изменению радиусов закругления микровыступов или, если следовать терминологии уравнения Фаулера—Нордгейма, форм-фактора. Это приводит к перегрузке отдельных микровыступов, их взрывному испарению, разряду между катодом и анодом, и, как следствие, к деградации катода. В случае автокатодов из углеродных материалов геометрическую однородность эмиттирующих микровыступов создать практически невозможно. Поэтому основным инструментом, выравнивающим эмиссионные характеристики поверхности автокатода, является формовка, о чем уже неоднократно упоминалось. Однако, как показано выше, простая формовка для автокатодов большой площади не приносит желаемых результатов. Это связано, по-видимому, не только с большой неравномерностью микро-, но и макроповерхности катода, а также с изменениями расстояния анод—катод, которые при их малой величине играют очень большую роль. Один из наиболее перспективных на сегодняшний день путей решения этой проблемы состоит в разделении катода на электрически изолированные фрагменты, индивидуальной формовке каждого фрагмента и сдвиге вольт-амперных характеристик фрагментов в заданный допуск (естественно, в более высоковольтной области) [214]. Такие операции осуществляются с помощью вычислительно-управляющих комплексов на базе ЭВМ путем снятия вольт-амперных характеристик до токов, бйльших первоначального значения для формовки, после чего производится повторная формовка автокатода. После ее окончания вольт-амперная характеристика в области больших токов практически не изменяется (в координатах Фаулера—Нордгейма), а в области минимальных токов — сдвигается до попадания в требуемый допуск. При параллельном включении обработанных таким образом автокатодов наблюдалось полное сложение токов в полученной многоэмиттерной системе, т. е. в пределах флуктуаций общий ток равен сумме токов эмиссии каждого из катодов [222]. На основании указанных операций получен [214 ( автоэмиссионный ток 100 мА в непрерывном режиме с 9 автоэлектронных катодов из пучков углеродных волокон диаметром 70 мкм. Расстояние анод—катод 1,5 мм, давление остаточных газов 5 -10 Па. Предельный ток до формовки системы из 9 катодов не превышал 2 мА. В результате индивидуальной формовки каждый из катодов обеспечивал эмиссионный ток на уровне 10—15 мА. Вольт-амперные характеристики всех  [c.157]


Смотреть страницы где упоминается термин Геометрические характеристики обработанной поверхности : [c.161]    [c.30]    [c.87]    [c.84]    [c.11]    [c.197]   
Смотреть главы в:

Расчеты точности обработки на металлорежущих станках  -> Геометрические характеристики обработанной поверхности



ПОИСК



Поверхность геометрическая



© 2025 Mash-xxl.info Реклама на сайте