Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальные уравнения движения реальной жидкости

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ РЕАЛЬНОЙ ЖИДКОСТИ  [c.94]

Дифференциальные уравнения движения реальной жидкости (уравнения Навье-Стокса)  [c.140]

Преобразование этого уравнения приводит к дифференциальным уравнениям движения реальной жидкости (капельной и газа)—уравнениям Навье-Стокса.  [c.140]

Дифференциальные уравнения движения реальной жидкости 141  [c.141]

Дифференциальные уравнения движения реальной (вязкой) жидкости можно получить, дополнив уравнения Эйлера (3.27), выведенные для идеальной (невязкой) жидкости, составляющими сил внутреннего трения, обусловленными вязкостью.  [c.94]


Дополняя полученными выражениями вида (3.34) дифференциальные уравнения Эйлера (3.27), получаем дифференциальные уравнения движения реальной (вязкой) жидкости  [c.96]

Развитие производительных сил в XIX в. поставило перед наукой новые задачи, решать которые с помощью гидромеханики идеальной жидкости уже было невозможно. Надо было переходить к изучению движения реальных жидкостей. Рассмотрением этого вопроса занялся Навье, который в 1823 г. на основе гипотезы Ньютона о силе внутреннего трения вывел дифференциальные уравнения движения вязкой жидкости. Однако эти уравнения, даже упрощенные Стоксом, из-за значительных математических трудностей можно было применять лишь для простейших случаев движения. Таким образом, для решения конкрет-  [c.7]

Возвращаясь теперь к историческому изложению основных этапов развития теории турбулентности, упомянем прежде всего интересную работу Джеффри Тэйлора (1921) о турбулентной диффузии, в которой впервые выявилась важная роль корреляционных функций (т. е. смешанных вторых моментов) поля скорости (правда, не для обычной эйлеровой скорости течения в фиксированной точке, а для более сложной лагранжевой скорости фиксированной жидкой частицы). Однако в общем виде идея о том, что корреляционные функции и другие статистические моменты гидродинамических полей должны быть признаны основными характеристиками турбулентного движения, была впервые высказана Л. В. Келлером и А. А. Фридманом (1924), предложившими общий метод построения (с помощью уравнений движения реальной жидкости) дифференциальных уравнений для моментов произвольного порядка гидродинамических полей турбулентных течений. Определение всех таких моментов при некоторых общих предположениях эквивалентно определению соответствующего распределения вероятности в функциональном пространстве P(d o) или Pt d(u), т. е. решению, проблемы турбулентности. Поэтому полная бесконечная система уравнений Фридмана — Келлера  [c.17]

В заключение отметим, что дифференциальные уравнения движения (3.44) были получены для идеальной (невязкой) жидкости, которая отличается от реальной отсутствием сил трения. В специальных курсах гидравлики приводятся особые дифференциальные уравнения движения для реальной (вязкой) жидкости. Если к ним применить использованный выше прием исследования, то мы получим аналогичный результат, свидетельствующий о том, что и в реальной жидкости при плавно изменяющемся движении распределение давлений в плоских живых сечениях потока подчиняется гидростатическому закону.  [c.86]


Теоретическая (рациональная) гидродинамика стремится приближенно предсказать движение реальной жидкости путем решения краевых задач для соответствующих систем дифференциальных уравнений в частных производных. При составлении этих уравнений в качестве аксиом принимают законы движения Ньютона. Предполагается также, что рассматриваемая жидкость (обычная жидкость или газ) всюду непрерывна и что на любую часть поверхности действует вполне определенное давление или какое-либо другое внутреннее напряжение (сила, приходящаяся на единицу площади), которое, по крайней мере локально, является дифференцируемой функцией координат, времени и направления. Наконец, устанавливается связь этих напряжений с движением жидкости посредством введения различных параметров, характеризующих данное вещество (плотность, вязкость и т. д.), и функциональных зависимостей (закон адиабатического сжатия и т. п.). Исходя из таких допущений, математики составили системы дифференциальных уравнений для различных идеализированных жидкостей (несжимаемой невязкой, сжимаемой невязкой, несжимаемой вязкой и т. д.).  [c.15]

В главе IV были рассмотрены простейшие решения точных дифференциальных уравнений установившегося движения вязкой несжимаемой жидкости. На основании сказанного выше эти решения определяют класс пока только возможных простейших установившихся движений вязкой несжимаемой жидкости, которые получили название ламинарных течений. Вопрос же о реальной осуществимости этих возможных простейших движений должен решаться отдельно либо с помощью непосредственной экспериментальной проверки основных особенностей ламинарных течений, либо с помощью теоретических исследований условий устойчивости этих течений. Экспериментальная проверка основных особенностей ламинарного течения, например, в круглой цилиндрической трубе показала, что для осуществимости ламинарного движения необходимо выполнение двух условий. Первое из этих условий заключается в том, что число Рейнольдса не должно превышать своего критического значения, т. е.  [c.385]

Уравнения (14.19) и (14.30) являются общими дифференциальными уравнениями неустановившегося напорного движения реальной сжимаемой жидкости в упругих трубопроводах.  [c.300]

Что касается непредсказуемости эволюции реальных физических систем, то проведенное нами обсуждение отображений и хаоса многим читателям может показаться неубедительным. И если бы не нижеследующий пример из области механики жидкостей, связь между отображениями, хаосом и дифференциальными уравнениями, описывающими физические системы, могла бы до сих пор не выйти за рамки математических журналов. В 1963 г. специалист по физике атмосферы по имени Э.Н. Лоренц из Массачусетсского технологического института предложил простую модель тепловой конвекции в атмосфере . Жидкость, подогреваемая снизу, становится легче и всплывает, а более тяжелая жидкость опускается под действием гравитации. Такие движения часто организуются в конвективные валики, подобные движениям жидкости в трехмерном торе, показанном на рис. 1.23. В математической модели конвекции, которую предложил Лоренц, используются три переменные (х, у, г), описывающие состояния системы. Переменная х пропорциональна амплитуде скорости, с которой жидкость циркулирует в жидком кольце, а переменные у и г отражают распределение температуры по кольцу. Так называемые уравнения Лоренца можно формально получить из уравнения Навье — Стокса, уравнения в частных производных механики жидкости (см., например, гл. 3). В безразмерном виде уравнения Лоренца записываются следующим образом  [c.40]

Нелинейные дифференциальные уравнения, описывающие пульсации кавитационных пузырьков в поле ультразвуковой волны, предполагают выполнение различных упрощающих допущений о движении пузырька, о свойствах жидкости, а также пара и газа, находящихся внутри пузырька. Вполне возможно, что некоторые из этих допущений слишком гипотетичны и это может привести к существенному различию между пульсациями реальных кавитационных пузырьков и решениями нелинейных дифференциальных уравнений, описывающих эти пульсации. Поэтому интересно сравнить численные решения рассмотренных выше уравнений с экспериментально наблюдаемыми пульсациями реальных кавитационных пузырьков.  [c.150]


Для вивода дифференциальных уравнений движения реальной жидкости выделим Б потоке элементарный параллелепипед, ребра которого дх, Зу а 2 параллельны соответствующим произвольно расположенным осям координат (фиг. 9-6) и масса которого М.  [c.140]

Теоретически коэффициент скорости может быть найден только для ламинарного истечения. Для, этого случая интегрирование дифференциальных уравнений движения реальной Жидкости приводит для скорости к формуле Сэмпсона, имеющей вид  [c.335]

Для получения дифференциального уравнения движения вязкой (реальной) жидкости необходимо учесть силы вяутреннего (вязкостного) трения, иначе —силы, обусловленные вязкостью жидкости. Согласно закону Ньютона, касательное напряжение S, возникающее между перемещающимися с различной скоростью слоями жидкости (отношение силы трения к площади), пропорционально градиенту скорости  [c.314]

Говоря о статистическом характере теории турбулентности, ее часто сравнивают с кинетической теорией газов, изучающей системы из очень большого числа взаимодействующих между собой молекул. Это сравнение оправдано в том смысле, что в обеих указанных теориях точное описание эволюции исследуемой механической системы теоретически безнадежно, а практически было бы бесплодным. Однако надо иметь в виду, что между статистической механикой молекулярных ансамблей, изучавшейся Гибсом, Больцманом и другими исследователями, и статистической гидромеханикой вязкой жидкости существует и большое принципиальное различие. Оно связано, в первую очередь, с тем, что суммарная кинетическая энергия совокупности движущихся молекул не меняется во времени (во всяком случае при простейших предположениях о молекулярных взаимодействиях, обычно принимаемых в кинетической теории газов), тогда как при движении реальной жидкости ее кинетическая энергия всегда диссипируется в теплоту под действием вязкости. Менее существенным, но также не безразличным оказывается то, что молекулярные ансамбли дискретны по своей природе и их временная эволюция описывается системами обыкновенных дифференциальных уравнений, в то время как в гидромеханике речь идет о движениях непрерывной среды, описываемых уравнениями в частных производных. В результате аналогия с кинетической теорией газов сравнительно мало помогает построению теории турбулентности, облегчая лишь самое первоначальное понимание идеи о статистическом подходе к физической теории.  [c.9]

МЕТАЛЛОФИЗИКА — раздел физики, в котором изучаются структура и свойства металлов МЕТОД [аналогии состоит в изучении какого-либо процесса путем замены его процессом, описываемым таким же дифференциальным уравнением, как и изучаемый процесс векторных диаграмм служит для сложения нескольких гармонических колебаний путем представления их посредством векторов встречных пучков используется для увеличения доли энергии, используемой ускоренными частицами для различных ядерных реакций Дебая — Шеррера применяется при исследовании структуры монохроматических рентгеновских излучений затемненного поля служит для наблюдения частиц, когда направление наблюдения перпендикулярно к направлению освещения Лагранжа в гидродинамике состоит в том, что движение жидкости задается путем указания зависимости от времени координат всех ее частиц ин1 ерференционного контраста служит для получения изображений микроскопических объектов путем интерференции световых воли, прошедших и не прошедших через объект меченых атомов состоит в замене атомов исследуемого вещества, участвующего в каком-либо процессе, их радиоактивными изотопами моделирования — метод исследования сложных объектов, явлений или процессов на их моделях или на реальных установках с применением методов подобия теории при постановке и обработке эксперимента статистический служит для изучения свойств макроскопических систем на основе анализа, с помощью математической статистики, закономерностей теплового движения огромного числа микрочастиц, образующих эти системы совнадений в ядерной физике состоит в выделении определенной группы одновременно происходящих событий термодинамический служит для изучения свойств системы взаимодействующих тел путем анализа условий и количественных соотношений происходящих в системе превращений энергии Эйлера в гидродинамике заключаегся в задании поля скоростей жидкости для кинематического описания г чения жидкости]  [c.248]

Теоретическое решение задачи о движении двухфазных сред связано с тем или иным упрощением реальной картины течения, той или иной степенью идеализации свойств среды. Тем не менее система дифференциальных или интегральных уравнений для описания общего случая движения двухфазной жидкости должна учитывать принциальную разрывность среды и происходящие в ней обменные процессы массообмен, обмен энергией и количеством движения.  [c.43]

Влияние сил трения на движение упругой среды в коротких каналах. Волновые процессы изменения состояния среды в трубопроводах, определяемые уравнениями (43.1) и (43.2) (не учитывающими действие сил трения), были изучены в классической работе Н. Е. Жуковского [4] им был посвящен и ряд последующих исследований, среди которых особо отметим работы Г. Г. Калиша [11, 12, 13]. Движение реальных газов и жидкостей, описываемое дифференциальными уравнениями (42.4) — (42.5), было исследовано И. А. Чарным и подробно рассмотрено в его монографии [25].  [c.402]


Смотреть страницы где упоминается термин Дифференциальные уравнения движения реальной жидкости : [c.210]    [c.6]    [c.855]   
Смотреть главы в:

Гидравлика  -> Дифференциальные уравнения движения реальной жидкости



ПОИСК



283 — Уравнения жидкости

Движение дифференциальное

Дифференциальное уравнение движения

Дифференциальное уравнение, движени

Дифференциальные уравнения движения жидкости

Жидкость реальная

Жидкость реальная-—Уравнение для

Реальный газ

Уравнения движения жидкости



© 2025 Mash-xxl.info Реклама на сайте