Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Никелевые сплавы высоколегированные жаропрочные —

Обработка отверстий в деталях из материалов повышенной вязкости сплавов магния — по ГОСТ 804 — 72 алюминиевых — по ГОСТ 4784 — 74 латуни — по ГОСТ 15527 — 70 титановых сплавов, сталей и сплавов высоколегированных, коррозионно-стойких, жаростойких, жаропрочных (на никелевой основе)-по ГОСТ 5632-72 и ГОСТ 20072-74.  [c.18]

Упрочняющими фазами служат карбиды и карбонитриды в жаропрочных сталях, 7 -фаза с ГЦК решеткой в никелевых сплавах, фазы Лавеса и некоторые другие промежуточные фазы в высоколегированных сталях.  [c.496]


Технологическая пластичность высоколегированных жаропрочных сталей на основе железа значительно выше, чем сталей и сплавов на никелевой основе.  [c.513]

В вакууме 10 —5 10" мм рт. ст. можно паять медь и никель, в вакууме 10 —10 мм рт. ст. —титановые сплавы, высоколегированные стали и никелевые жаропрочные стали. В сплавах, содержащих значительные количества хрома, алюминия и т. п., при пайке в низком и среднем вакууме на изделие наносят тонкий слой флюса. Для этого собранное перед пайкой изделие кипятят в насыщенном растворе флюса (например, № 200) в течение 15— 25 мин. После высушивания при температуре 100—120° С в течение 20—30 мин изделие паяют в вакууме. Флюс может быть также нанесен с помощью кисти в виде тонкого слоя жидкой пасты, уложен в неглубокие специальные пазы и т. п. При высокотемпературной пайке в вакууме значительная часть флюса испаряется.  [c.197]

В зависимости от основных свойств высоколегированные деформируемые стали и сплавы в соответствии с ГОСТ 5632—61 разделяют на три группы I — коррозионностойкие (нержавеющие) стали, И — жаростойкие (окалиностойкие) стали и сплавы, III—жаропрочные стали и сплавы. По структуре, получаемой при охлаждении на воздухе после высокотемпературного нагрева, стали разделяют на шесть классов 1) мартенситный, 2) мартенсито-ферритный, 3) ферритный, 4) аустенито-мартен-ситный, 5) аустенито-ферритный, 6) аустенитный. Сплавы различают двух видов на железо-никелевой основе и никелевой.  [c.7]

Алитирование не влияет на жаропрочность, предел прочности и пластичность высоколегированных никелевых сплавов [Л. 5]. Но, предохраняя поверхность сплава от окисления, алитированный слой замедляет процесс разупрочнения и сохраняет высокие пластические свойства материала при кратковременном и особенно при длительном воздействии высоких температур. Алитированный слой глубиной не менее 20 мкм с содержанием алюминия 20—40% повышает жаростойкость сплавов при 900—1100°С и в несколько раз увеличивает ресурс (до 4000—10 000 ч).  [c.12]

Стали и сплавы высоколегированные коррозионно-стойкие, жаростойкие и жаропрочные (деформируемые). Марки. В стандарте приводятся группы дефор.мируемых сплавов на железоникелевой и никелевой основах. Регламентируется химический состав сталей мартенситного, мартенсито-ферритного, ферритного, аустенито-мартенситного, аустенито-ферритного и аустенитного класса, а также сплавов на железоникелевой и никелевой основах. Указывается примерное назначение по применению коррозионно-стойких, жаростойких и жаропрочных сталей и сплавов.  [c.486]


Дисперсионное упрочнение объема зерен приводит к локализации пластических деформаций по приграничным участкам, относительному проскальзыванию зерен и зарождению горячих микротрещин. Такие ГТ называются трещинами дисперсионного твердения. ГТ этого типа характерны для высоколегированных гетерогенных жаропрочных аустенитных и никелевых сплавов.  [c.64]

К группе материалов повышенной вязкости относят сплавы магния по ГОСТ 804-99 алюминиевые сплавы по ГОСТ 4784-97 латуни по ГОСТ 15527-2004 титановые сплавы стали и сплавы высоколегированные, коррозионно-стойкие, жаростойкие, жаропрочные (на никелевой основе) по ГОСТ 5632-72.  [c.235]

Трудно обрабатываются детали из высоколегированных жаропрочных и нержавеющих сплавов, на никелевой, титановой и другой основе, имеющие большую вязкость, высокую теплоемкость и низкую теплопроводность.  [c.86]

С ростом рабочих температур и единичных мощностей установок, как правило, заметно увеличивается объем применения в них сварных конструкций. Так, при изготовлении современных паровых и газовых турбин удельный вес сварных узлов может доходить до 50—70% от общего веса конструкции. Современные котлы имеют десятки тысяч сварных стыков труб. В сварном исполнении изготовляются наиболее ответственные узлы высокотемпературных установок, как например, роторы, корпуса и диафрагмы турбин, сосуды высокого давления, основные конструкции нефтяного и химического машиностроения. Широкое применение в них находят теплоустойчивые и жаропрочные стали и сплавы, в том числе и высоколегированные сплавы на никелевой основе и тугоплавкие металлы.  [c.3]

В СССР номенклатура и химический состав коррозионностойких сталей и сплавов обусловлен ГОСТ 5632—72 Стали высоколегированные и сплавы коррозионностойкие, жаростойкие и жаропрочные , который дает классификацию выпускаемых материалов по основным элементам и структурной принадлежности. Стандарт охватывает стали, т. е. сплавы на железной основе, а также сплавы на железоникелевой и никелевой основе.  [c.9]

Важной классификацией легированных сталей является деление их на структурные классы мартенситный, мартенситно-ферритный, ферритный, аустенито-мартенситный, аустенито-ферритный, аусте-нитный. Высоколегированные коррозионностойкие, жаростойкие и жаропрочные сплавы подразделяются на сплавы на железоникелевой основе и сплавы на никелевой основе.  [c.103]

Аналогичные закономерности наблюдаются на никелевых и циркониевых сплавах, жаропрочных и высокопрочных сталях, на отливках из высоколегированных сплавов.  [c.92]

При очень высоком нагреве стали, даже очень высоколегированные, не имеют необходимой жаропрочности и заменяются сплавами на никелевой основе (в том числе, с кобальтом) и тугоплавкими сплавами на основе хрома, но более часто молибдена и ниобия.  [c.401]

Сварка в защитных газах как плавящимся, так и неплавящимся электродом широко применяется для соединения низколегированных, конструкционных, высоколегированных нержавеющих и жаропрочных сталей и сплавов, алюминиевых, магниевых, никелевых и медных сплавов, активных и редких металлов (цирконий, тантал, титан и молибден).  [c.320]

Высоколегированные стали и сплавы подразделяют на три группы I — коррозионностойкие (нержавеющие), II — жаростойкие (окалиностойкие), 111 — жаропрочные. По структуре отожженной стали (с охлаждением на воздухе) эти стали подразделяют на шесть классов 1 — мартенситный, 2 — мартенсито-ферритный, 3 — феррит-ный, 4 — аустенито-мартенситный, 5 — аустенито-фер-ритный, 6 — аустенитный. Сплавы 7 и 8-го классов также имеют аустенитную структуру, но являются не сталями, а сплавами на железо-никелевой и никелевой основе соответственно (табл. 18).  [c.35]

Стали высоколегированные и сплавы коррозионностойкие, жаростойкие и жаропрочные обладают особыми свойствами. Согласно ГОСТ 5632—72 к этой группе относятся стали и сплавы на железной, железоникелевой и никелевой основах, предназначенные для работы в коррозионноактивных средах и при высоких температурах. В зависимости от основных свойств эти стали и сплавы подразделяют на группы первая — коррозионностойкие (нержавеющие) стали и сплавы, обладающие стойкостью против различных видов коррозии вторая — жаростойкие (окалиностойкие) стали и сплавы, обладающие стойкостью против химического разрушения поверхности в газовых средах при температуре выше 550° С, работающие в ненагруженном или слабонагруженном состоянии третья — жаропрочные стали и сплавы, способные работать в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной жаростойкостью.  [c.26]


Применяемые в настоящее время жаростойкие и жаропрочные сплавы можно разделить на три группы сплавы на железной основе (высоколегированные стали), сплавы на никелевой основе и на кобальтовой основе. Сплавы двух последних типов наиболее жаропрочны.  [c.220]

Деформируемые высоколегированные стали и сплавы на железоникелевой и никелевой основах предназначены для работы при высоких температурах и в условиях, где требуется высокая стойкость против коррозии. В соответствии с ГОСТ 5632—61 эти стали и сплавы подразделяются на три группы 1) коррозионностойкие (нержавеющие), 2) жаростойкие (окалиностойкие) и 3) жаропрочные.  [c.270]

Различают литые коррозионностойкие и жаропрочные стали и сплавы (заготовка, получаемая только литьем) и деформируемые стали и сплавы, когда заготовка подвергается ковке. На деформируемые высоколегированные стали и сплавы на железоникелевой и никелевой основах, предназначаемые для работы в условиях, где  [c.8]

Сварка ручная дуговая в среде защитных газов неплавящимся электродом Металлический стол электросварщика с подводом защитного газа (углекислого, аргона и др. или смеси инертного газа с активным) к газоэлектрической горелке и с подключением ее к источнику сварочного переменного либо постоянного тока Сварка узлов и изделий из углеродистых, низколегированных конструкционных, высоколегированных нержавеющих и жаропрочных сталей и сплавов, алюминиевых, никелевых и медных сплавов, активных и редких металлов Рабочее место оснащается необходимыми приспособлениями, пу-ско-регулирующей аппаратурой, рабочим инструментом и защитными устройствами Единичное и серийное производство  [c.169]

Вариант И. Стояк в комбииации с местными прибылями. Литниково-питающие системы по этому варианту (рис. 77) получили распространение при изготовлении сложных фасонных отливок. Металл обычно заполняет форму снизу, благодаря чему обеспечивается получение качественных деталей из различных сплавов, в том числе из высоколегированных сталей и никелевых сплавов с большим содержанием хрома (жаропрочные сплавы) и титановых сплавов.  [c.158]

Катоды прямоиакальиых ламп изготовляются из высоколегированных никелевых сплавов (табл, 8), обладающих высокой жаропрочностью и электрод-сопротивлением (фиг. 27).  [c.265]

При использовании сталей, склонных к образованию трещин при термической обработке, следует избегать соединений высокой жесткости, например, типа показанных на рис. 56 вварных толстостенных штуцеров в сосудах. При повышенной жесткости сварных соединений, например, в сварных узлах паропроводов из Сг-Мо-У стали при толщине стенки свыше 20—30 мм или сварных штуцерах с непосредственной сваркой труб любой толщины друг с другом, нужно вводить операцию зачистки наружной поверхности швов до плавного сопряжения с основным металлом перед термической обработкой, чтобы исключить эффект концентрации напряжений. Целесообразно в ряде случаев рассматривать вопрос о возможности перехода к высокотемпературной термической обработке (нормализации для перлитных сталей и аустенитизации для аустенитных). Можно также вводить предварительную облицовку кромок, так как в этом случае жесткость сварного соединения заметно меньше и степень повреждения границ зерен око-лошовной зоны при воздействии ТДЦС также снижается. Для высоколегированных аустенитных сталей и сплавов на никелевой основе повышенной жаропрочности целесообразным бывает использование металла, выплавленного по совершенной металлургической технологии, применение мелкозернистого материала и ряд других методов, детально рассмотренных в главах, посвященных соответствующим типам материалов.  [c.103]

В серусодержащих средах с высоким кислородным потенциалом интенсивность газовой коррозии жталлов обусловлена рядом причин. Во-первых, для сульфидов характерны большие значения А (табл. 14.3). Следствием является слабое сцепление сульфидной окалины с металлом, например, никелевыми сплавами и сталями, в том числе высоколегированными. Во-вторых, для систем металл— сера характерно образование легкоплавких эв-тектик (см. табл. 14.3). Образование жидкой фазы в окалине приводит к резкому возрастанию скорости массо-переноса и облегчает развитие трещш (эффект Ребиндера). Важную роль на практике играет корразия никеля серусодержащих средах. Жаропрочные никелевые сплавы — основной конструкционный материал для изготовления  [c.414]

Хороших характеристик внутреннего трения при высоких температурах не имеют и все другие высокотемпературные сплавы. Циклическая вязкость жаропрочных сплавов на никелевой и кобальтовой основах при 20° крайне низкая. Повышение температуры до 600—650° сопровождается дальнейшим снижением декремента колебаний никелевого сплава (исследовался сплав ЭИ607), хотя и вызывает некоторое повышение декремента кобальтового сплава виталлиум. При 650° абсолютные значения декремента колебаний никелевых и кобальтовых сплавов так же низки, как и у высоколегированных сталей аустенитного класса.  [c.315]

Здесь прежде всего необходимо учитывать, что степень упрочнения или возрастание сопротивления деформации с понижением температуры у высоколегированных сплавов значительно выше, чем у обычных конструкционных сталей. Это указывает на совершенно различный механизм деформирования в области высоких температур у малолегированных сталей и высоколегированных сплавов. Так, например, механизм деформирования при горячей обработке давлением конструкционных сталей даже при температуре 850° соответствует горячему механизму, в то время как у высоколегированных сплавов значительное упрочнение и смешанный механизм деформирования имеют место уже в интервале температур 900—950°. Поскольку высоколегированные сплавы подвергаются значительному упрочнению в процессе обработки давлением, то деформация их в условиях механизма горячего деформирования возможна только при применении высоких температур конца обработки. Поэтому для особо высоколегированных сплавов температура конца деформации должна применяться, как уже указывалось, не ниже 1050—1100°. Большее упрочнение высоколегированных сплавов объясняется высокой температурой начала рекристаллизации и малой скоростью рекристаллизации при горячей пластической деформации. Это следует из того, что высоколегированные жаропрочные сплавы на никелевой основе имеют температуру начала рекристаллизации, в среднем равную 1000°.  [c.146]


Высоколегированные сплавы никеля обладают наряду с высокой жаропрочностью и окалиностойкостью значительной коррозионной стойкостью в газовых, соляных и жидкометаллическнх средах и могут эксплуатироваться до температур 1000—1100°С (табл. 21.1). Никелевые сплавы делят на две группы гомогенные нетермоупрочняемые и гетерогенные термоупрочняемые дисперсионным твердением [1, 2].  [c.304]

Деформируемые высоколегированные стали и сплавы на железоникелевой и никелевой основе по ГОСТ 5632—72 подразделяются на три группы I — коррозионностойкие (нержавеющие) стали, стойкие против электрохимической коррозии (атмосферной, щелочной, кислотной, солевой и др.) II — жаростойкие (окалиностойкие) стали и сплавы, стойкие против химического разрушения поверхности в газовых средах при температурах выше 550° С, работающие в ненагруженном или слабонагружен-ном состоянии III — жаропрочные стали и сплавы, работающие в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной окалиностойкостью.  [c.47]

Основные жаростойкие сплавы созданы на основе железа и никеля. Химический состав высоколегированных сталей и сплавов на железной, железоннкелевой и никелевой основах, предназначенных для работы в коррозионно-активных средах и при высоких температурах, приведен в ГОСТ 5632—72. Согласно этому стандарту жаростойкие (окалиностойкие) сплавы относятся к группе II и характеризуются как стали и сплавы, обладающие стойкостью против химического разрушения поверхности в газовы средах при температуре выше 550 °С, работающие в иенагруженном или слабонагружениом состоянии. Жаропрочные стали и сплавы, отнесенные к группе III, также должны обладать достаточной жаростойкостью.  [c.408]

Жаропрочные высоколегированные стали и сплавы на железной и никелевой основах относят к сложиолеги-  [c.469]

В высоколегированной низкоуглеродистой стали типа тинидур или сплаве на никелевой основе типа нимоник (см. табл. 34) после закалки при высоких температурах, старения при повышенных температурах, по всей вероятности, образуются сверхструктуры (упорядоченные твердые растворы) и интерметаллиды типа NigTi, или промелсуточные фазы. Длительное действие напряжений в условиях повышенных температур люжет вызвать ряд превращений в структуре стали, например, переход пластинчатого перлита в зернистый, что сильно снижает предел ползучести стали. Закалка и отпуск (улучшение) стали, предназначенной для работы при повышенных температурах, создающие все же неустойчивую сорбитную структуру, снижают предел ползучести стали. Поэтому термическая обработка жаропрочной стали долл на обеспечивать у нее наиболее устойчивую структуру при рабочих температурах. Это создается путем соответствующего высокого отпуска, нормализации или отжига.  [c.363]

Жаропрочные литейные сплавы группы VI (ЖС6-К, ХН67ВМТЮЛ и др.) также представляют собой высоколегированные материалы на никелевой основе. Их обрабатываемость еще более худшая, чем материалов предыдущей группы, что объясняется наличием интерметаллидных и карбидных включений, приводящих к повышенному абразивному изнашиванию инструмента, особенно из быстрорежущих сталей.  [c.4]

Детали, работающие при высоких температурах, рассчитывают на ограниченную долговечность. Срок их службы можно только повысить конструктивными приемами (снижение уровня напряжений, рациональное охлаждение) и главным образом применением жаропрочных материалов (высоколегированные хромомолибденовые, хромо-ванадиемолибденовые, хромовольфрамомолибденовые стали, титановые сплавы, сплавы на никелевой основе). В последнее время для изготовления термически напряженных деталей применяют металлокерамические спеченные материалы (керметы) на основе оксидов, нитридов и боридов Т1, Сг, А1, карбидов и 11итридов В и 51, со связкой из металлического никеля, кобальта и молибдена.  [c.27]


Смотреть страницы где упоминается термин Никелевые сплавы высоколегированные жаропрочные — : [c.436]    [c.235]    [c.320]    [c.79]    [c.2]    [c.262]    [c.53]    [c.54]    [c.231]    [c.217]    [c.24]    [c.86]    [c.221]   
Материалы в машиностроении Выбор и применение Том 3 (1969) -- [ c.0 ]



ПОИСК



Высоколегированные р-сплавы

Жаропрочность

Жаропрочные КЭП

Жаропрочные сплавы на никелевой

Жаропрочные сплавы на никелевой жаропрочность

Никелевые сплавы

Никелевые сплавы высоколегированные

Никелевые сплавы-см. Сплавы никелевые

Сплавы жаропрочные

Ч никелевый



© 2025 Mash-xxl.info Реклама на сайте