Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нержавеющие Термическая обработка

Режимы термической обработки (обычно применяемые) хромистых нержавеющих сталей U получаемые при этом механические свойства приведены в табл. 82.  [c.482]

Режимы термической обработки и механические свойства хромистых нержавеющих сталей  [c.482]

Диссоциированный аммиак (ДА), содержа-И1.НЙ 75 % H.J и 25 % No, или диссоциированный аммиак с частичным дожиганием водорода с а 0,7-h0,9 и последующей осушкой (ПСА-08). Атмосфера ПСА-08 состоит из 7—20 % Н.2, 84—80 % N3. Диссоциированный аммиак (ДА и ПСА-08) применяют главным образом при иаг реве для термической обработки нержавеющих и электротехнических сталей.  [c.203]


Неправильная термическая обработка ферритных или аустенитных нержавеющих сталей приводит к тому, что места контакта отдельных кристаллов (так называемые границы зерен)  [c.302]

Степень сенсибилизации для данной температуры и времени сильно зависит от содержания в сплаве углерода. Нержавеющая сталь 18-8, содержащая 0,1 % С или более, может быть заметно сенсибилизирована при нагревании в течение 5 мин при 600 °С. В то же время аналогичная термическая обработка сходной стали, содержащей 0,06 % С, оказывает меньшее воздействие, а при содержании углерода 0,03 % сталь не подвергается заметным разрушениям при выдержке в умеренно агрессивных средах. Чем выше содержание никеля в сплаве, тем меньше времени требуется для сенсибилизации при данной температуре. Легирование сталей молибденом увеличивает это время [13].  [c.304]

Сплав 8-Ь1 представляет собой смесь двух фаз преобладающей а-фазы (гексагональной плотноупакованной) и некоторого количества -фазы (кубической объемно-центрированной). Наблюдающиеся трещины проходят по зернам а-сплава, однако р-фаза подвергается пластическим разрушениям. Термическая обработка и изменение состава (например, понижение содержания алюминия), способствующие образованию Р-фазы, увеличивают стойкость к КРН. Состав фазы также может иметь определяющее значение установлено, что в ряде других титановых сплавов р-фаза склонна к КРН [37]. Механизм растрескивания,титановых сплавов находится еще на стадии обсуждения. Однако влияние структуры сплава, особенностей среды, а также действие посторонних анионов и приложенного напряжения в значительной степени сходно с влиянием этих факторов на поведение нержавеющих сталей (см. разд. 7.3.1 и 7.3.2). Это, по-видимому, свидетельствует об идентичности механизма КРН титана и нержавеющих сталей.  [c.377]

Химический состав, термическая обработка и механические свойства основных марок хромистой нержавеющей стали показаны в табл. 19.  [c.32]

В справочнике приведены химический состав, механические и физические свойства, режимы термической обработки и названия большинства углеродистых, легированных и высоколегированных сталей, применяемых в настоящее время в мировой практике. Содержатся основные данные о конструкционных, инструментальных, нержавеющих, кислотоупорных, теплостойких и жаропрочных талях двенадцати стран Европы, Америки и Азии (ФРГ, США, Бельгия, Англия,  [c.268]

Нержавеющие и кислотостойкие стали в зависимости от химического состава могут сочетать различные свойства наряду с коррозионной стойкостью в атмосферных условиях они могут быть также окалино- или коррозионностойкими в различных агрессивных средах. Однако их коррозионная стойкость даже в одной какой-либо среде в значительной степени зависит от технологической обработки. Большое влияние на служебные свойства сталей оказывают термическая обработка, сварка, условия горячей пластической деформации, качество поверхности металла и другие факторы.  [c.9]


Присутствие даже небольшого количества С в хромистых нержавеющих сталях, а также их термическая обработка оказывают существенное влияние на коррозионные свойства металла.  [c.16]

НЕКОТОРЫЕ ТЕХНОЛОГИЧЕСКИЕ ОСОБЕННОСТИ НЕРЖАВЕЮЩИХ И КИСЛОТОСТОЙКИХ СТАЛЕЙ ГОРЯЧАЯ ПЛАСТИЧЕСКАЯ ДЕФОРМАЦИЯ И ТЕРМИЧЕСКАЯ ОБРАБОТКА  [c.51]

Щелочное травление нержавеющих сталей осуществляется в расплаве каустической соды (70—80%) и селитры (30—20%) при 400—550° С с выдержкой от 5 до 20 мин. Окалина на поверхности металла, появившаяся в результате термической обработки стали в этом расплаве, разрыхляется и значительная часть ее легко удаляется при последующем погружении стали в холодную промывную воду.  [c.54]

Механические свойства и термическая обработка литейных хромистых нержавеющих сталей  [c.203]

Для деталей нержавеющих жаростойких подшипников, работающих в интервале температур до 350—400° С, обеспечивающих необходимую стабильность размеров, оптимальные механические свойства и удовлетворительную коррозионную стойкость, применяют следующий режим термической обработки предварительный нагрев до 850° С, окончательный до 1070—1090° С, охлаждение в масле, а затем замедленное охлаждение до 70—80° С и двукратный отпуск при 400° С (3 << + 2 ч).  [c.376]

Подшипниковые стали — см. также Шарикоподшипниковые стали — Марки и назначение 366, 379 — Обработка давлением горячая — Режимы 372, 378 — Термическая обработка 368, 370—377 --нержавеющие 375—378 — Коррозионная стойкость 377 — Механические свойства 376, 377 — Технологические и физические свойства 376 — Химический состав 375, 378 --низкоуглеродистые цементуемые — Механические свойства и режимы термической обработки 374 — Химический состав и свойства 375 Порошки металлические — Виды, насыпной вес и стоимость 321  [c.438]

Образцы из нержавеющих сталей перед обкаткой подвергали термической обработке по оптимальным режимам, точению и шлифованию. Обкатку производили на токарном станке в самоцентрирующемся трехроликовом приспособлении в два прохода при продольной подаче 0,07 мм/об. При упрочнении образцов диаметром рабочей части 10 мм диаметр роликов составлял 40 мм, радиус закругления профиля 5 мм. В качестве смазки применяли машинное масло. Для получения сопоставимых результатов обкатку производили, меняя только давление на ролик в пределах 400—2000 Н при неизменных остальных параметрах.  [c.159]

Термическая обработка имеет значение как мероприятие, позволяющее изменять величину внутренних остаточных напряжений и структуры стали. Снижение величины внутренних остаточных напряжений первого рода, т. е. напряжений, уравновешивающихся в объемах, соизмеримых с размерами детали, оказывает защитное действие независимо от вида рабочей среды. Опо замедляет процесс коррозионного растрескивания в растворах едкого натра и в растворах, содержащих ионы хлора и кислорода. С этой целью для аустенитных нержавеющих сталей рекомендуется температура отпуска 800—820 °С.  [c.195]

Марки стали, сварочные материалы и режимы термической обработки сварных соединений перлитных сталей с нержавеющими  [c.152]

При использовании хромомолибденованадиевых или хромистых нержавеющих сталей термическая обработка сварных конструкций является обязательной в связи с неизбежностью образования в исходном состоянии после сварки в шве и околошовной зоне хрупких закаленных структур. В связи с большей термической устойчивостью мартенсита в этих сталях температура отпуска должна быть повышена до 700—760°.  [c.91]

Межкристаллитную коррозию нержавеющих сталей можно также выявить электрохимическим путем — анодным травлением в течение 5 Л1ин при плотности тока 0,65 a/ м и 20 Ю С в 60%-ном растворе серной кислоты с 0,5% уротропина или другого замедлителя коррозии. Метод анодного травления, заключающийся в анодной поляризации исследуемого участка поверхности стали, обладает тем достоинством, что позволяет быстро (1,5—5 мин) определять склонность стали к межкристаллитной коррозии непосредственно на полуфабрикатах и готовых сварных изделиях. Применение этого метода дает возможность производить межоперационную проверку склонности металла к меж-кристаллитной коррозии и соответствующей термической обработкой устранять эту склонность.  [c.345]


Обработку холодом используют главным образом для стабили-3aifHH размеров точных шарикоподшипников и деталей приборов, при термической обработке цементованных изделий из иысоколе-/ нрованных сталей, содержащих много аустенита после закалки, а также нержавеющих сталей и для восстановления изношенных деталей.  [c.216]

Мартенситные стали, если их подвергнуть термической обработке для повышения твердости, приобретают сильную склонность к растрескиванию в слабо- и умереннокислых растворах. Особенно это проявляется в присутствии сульфидов, соединений мышьяка или продуктов окисления фосфора или селена. Специфические свойства кислот не имеют существенного значения до тех пор, пока процесс идет с выделением водорода. Эта ситуация отличается от случая аустенитных сталей, которые разрушаются исключительно в результате специфического действия анионов. Катодная поляризация также не защищает мартенситные стали от растрескивания, а ускоряет его. Все эти факты свидетельствуют, что мартенситные стали в указанных условиях разрушаются не по механизму КРН, а в результате водородного растрескивания (см. разд. 7.4). При катодной поляризации в морской воде, особенно при высоких плотностях тока, более пластичные ферритные стали подвергаются водородному вспучиванию, а не растрескиванию. Аустенитные нержавеющие стали устойчивы и к водородному вспучиванию, и к водородному растрескиванию.  [c.319]

Нержавеющие стали. Основной легирующий элемент нержавеющих сталей — хром, который повышает механические свойства стали и способствует образованию на ее поверхности тонкого слоя окислов, облагораживающего электродный потенциал стали и повышающего ее коррозионную стойкость. Она повышается не монотонно, а скачкообразно. Первый порог коррозионной стойкости достигается при концентрации хрома, равной 12,8 %. При увеличении содержания хрома до 18 или до 25—28 % достигается второй порог коррозионной стойкости и наблюдается дальнейшее повышение коррозионной стойкости стали. Однако повышение содержания хрома приводит к понижению механических свойств стали, особенно ударной вязкости, а также затрудняет сварку, вызывая хрупкость сварного шва. Стали с высоким содержанием хрома после сварки требуют термической обработки. Повышение содержания углерода в нержавеющих сталях понижает их коррозионную стойкость, что связано с уменьшением содержания хрома в твердом растворе вследствие образования карбидов. Поэтому повышение содержания углерода в стали вызывает сдвиг порога коррозионной стойкости в область более высокой концентрации хрома. Понижение содержания углерода ниже 0,02% делает сталь стойкой против карбидообразо-вания.  [c.31]

Паттнайк и Лоули [23] извлекали проволоку из композитов алюминий—нержавеющая сталь после изготовления, а также после термической обработки композита. На большей части поверхности проволоки были обнаружены следы поверхностной реакции, однако проволока, извлеченная из композита после его изготовления, сохраняла исходные форму и диаметр. Проволока, извлеченная после реакции при 823 К, имела диаметр 0,18 мм и выглядела как кукурузный початок. В обоих случаях утонение проволоки в шейке было примерно одинаковым вне зависимости от того, подвергали ли испытанию изолированную проволо ку или проволоку в составе композита. В центре каждой проволоки наблюдалось скопление пор, что характерно для вязкого разрушения. Однако после отжига при 898 К диаметр проволоки вырос до 0,20 мм, так что размеры незатронутой реакцией сердцевины проволоки стали очень малы и проч1Ность, и пластичность та ких проволок заметно снизились.  [c.179]

Хотя термическая обработка при 823 К приводит к резким изменениям структуры композитов и слой продукта реакции занимает значительную часть объема композита, деформация разрушения, согласно Паттнайку и Лоули [23], остается неизменной. Это означает, что предшествующее разрушению трещинообразование в слое алюминида железа слабо влияет на общую пластичность. Джонс [13] показал, что, хотя линии скольжения в нержавеющей стали исходят из вершин трещин, они развиваюпся в полосы деформации, пересекающие все сечение проволоки, раньше, чем деформация становится всеобщей и образуется шейка. На рис. 5 гл. 1 приведен заимствованный из работы Джонса [13] пример образования трещин в интерметаллидной фазе, которое предшествует скольжению в проволоке. С другой стороны, эти трещины в интерметаллидном соединении, по-видимому, приводят к трещино-об разованию в матрице.  [c.179]

В то же время высокие требования к качеству изделий из нержавеющих, жаропрочных сталей часто требуют 100%-ного контроля механических свойств. Однако в силу существующих методик прямых испытаний механических свойств 100%-но можно контролировать только твердость, а предел текучести, предел прочности, относительное удлинение и сужение —только выборочно на образцах по твердости — по специальным таблицам. Но на мноТих изделиях даже твердость, по Роквеллу или Бринеллю, не всегда удается замерить — это детали сложной конфигурации, большие по весу и объему сварные изделия. Тогда прибегают к сравнительным методам (например, по методу Польди). Вот почему для этого класса сталей важны разработка и внедрение неразрушающих методов контроля механических свойств и качества термической обработки.  [c.94]

Материалы, высокоустойчивые в кислой среде или к окислению при повышенных температурах (такие, как нержавеющая сталь и сплавы меди, никеля и хрома), часто подвергают последующей термической обработке и (или) шлифованию или полированию с целью повышения сопротивления износу и напряжению.  [c.82]


Нержавеющие стали серии AISI 400 — это стали, номинально содержащие от 11 до 27,% Сг. Нержавеющие стали этой серии разделяются далее на ферритные и мартенситные. Ферритные стали не подвергаются закалке в настоящей программе испытаний к этой категории относились стали AISI 405, 430 и 446. Мартенситные стали подвергаются закалке при термической обработке в настоящей программе испытаний к этой категории относится сталь AISI 410.  [c.329]

Механические свойства хромистых нержавеющих сталей ферритного, мартенсито-ферритного и иартенситного классов после оптимальной термической обработки  [c.15]

Во всех случаях проектирования химической аппаратуры из нержавеющих сталей следует учитывать необходимость проведения термической обработки для некоторых марок сталей в целях повышения коррозионной стойкости, поскольку структурные изменения, происходящие в металле в результате нагрева, например, при штамповке или сварке, как правило, оказывают существенное влияние на его коррозионную стойкость. Следует также учитывать, что сортовой профиль нери<а-веющих сталей заводами черной металлургии поставляется преимущественно термически необработанным. При применении нержавеющих сталей различных марок, в том числе сталей с пониженным содержанием никеля, необходимо строго соблюдать технологию переработки металла уделять большое внимание вопросам сварки сталей (правильности выбора сварочных электродов и соблюдению определенных режимов сварки).  [c.66]

Нами исследовано также влияние режимов термической обработки на сопротивление коррозионной усталости во влажном воздухе некоторых нержавеющих сталей мартенситного класса. У стали 13Х12Н2ВМФ, закаленной с 1020°С и подверженной отпуску при 570 и 660°С, во влажном воздухе предел выносливости снижается на 30—35 %.  [c.104]

Выше было показано, что независимо от режимов термической обработки ряд нержавеющих сталей мартенситного и переходного классов слабо сопротивляется циклическим нагрузкам при воздействии коррозионной среды. Условный предел коррозионной выносливости указанных нержавеющих сталей в 3 %-ном растворе Na I при Л/ = 5 10 цикл почти такой же, как мало- и среднеуглеродистой стали с перлито-ферритной или сорбитной структурой, в то время как их коррозионная стойкость в ненапряженном состоянии в десятки раз выше, чем, например, стали 45.  [c.183]

Сормайт № 1 является заэвтектическим сплавом, приближающимся по структуре к вы-сокохромисгым нержавеющим чугунам. Этот сплав пра,ктически не поддаётся термической обработке (мало изменяет свою твёрдость).  [c.248]

Термическая обработка существенным образом влияет на склонность аустенитных нержавеющих сталей к коррозионному растрескиванию. Так, холоднообработанная сталь с концентрацией 18,56% хрома, 10,6% никеля и 0,05% углерода разрушается при испытаниях в хлористом магнии за 18 час. Та же сталь, отожженная после холодной обработки, не разрушалась в течение всего периода испытаний. Та же картина наблюдалась и у стали с 18,5% хрома, 8,8% никеля и 0,07% углерода. Обжатие в этом случае достигало 30— 35% [111,93]. Аустенитная нержавеющая сталь, выдержанная после холодной обработки при температуре 700° С в течение 4 час, оказалась в значительной степени склонной к коррозионному растрескиванию. После выдержки ее при той же температуре, но в течение 18 час, трещины появлялись только на отдельных образцах. Склонность к коррозионному растрескиванию у этого вида стали полностью устранялась при выдержке ее при температуре 800° С в течение 15мин [III,92].М.Шейл [111,94] испытывал влияние режима термообработки на коррозионное растрескивание стали с 18,7% хрома, 8,7% никеля в кипящем растворе, насыщенном хлористым магнием. Результаты испытаний приведены в табл. 111-16.  [c.148]


Смотреть страницы где упоминается термин Нержавеющие Термическая обработка : [c.310]    [c.98]    [c.41]    [c.146]    [c.177]    [c.171]    [c.60]    [c.102]    [c.118]    [c.166]    [c.176]    [c.34]    [c.40]    [c.115]    [c.215]    [c.118]    [c.217]   
Материалы в машиностроении Выбор и применение Том 3 (1969) -- [ c.15 , c.16 , c.18 , c.51 , c.52 , c.132 , c.134 , c.136 , c.138 ]



ПОИСК



504—505 ( ЭЛЛ) нержавеющие

Нержавеющая и кислотостойкая сталь термическая обработка проката

Нержавеющие сплавы Коррозионная стойкость литейные — Механические свойства и термическая обработка 50 Химический состав

Нержавеющие стали высокопрочные литейные 201—208 — Механические свойства 50 — Термическая обработка 50, 203, 204, 211, 212 Химический состав

Охлаждение и термическая обработка слитков нержавеющих сталей

Режимы термической обработки нержавеющей и. кислотостойкой стали

Состав, свойства и термическая обработка нержавеющих, кислотостойких и окалиностойких сталей

ТЕРМИЧЕСКАЯ ОБРАБОТКА И ПЕРЕДЕЛ СЛИТКОВ НЕРЖАВЕЮЩИХ СТАЛЕЙ

Термическая обработка валков для станов нержавеющая и кислотостойкая

Термическая обработка деталей машин, изготовляемых из высоколегированной нержавеющей и жаропрочной стали

Термическая обработка и механические свойства нержавеющей и кислотостойкой листовой стали

Термическая обработка сплавов жаропрочных нержавеющих литейных

Термическая обработка сплавов сталей нержавеющих кислотостойких

Термическая обработка сталей высокомарганцовистых нержавеющих

Термическая обработка сталей высокомарганцовистых нержавеющих литейных

Термическая обработка сталей высокомарганцовистых хромистых нержавеющих

УГЛОМЕРЫ - ХИМИКО-ТЕРМИЧЕСКАЯ ОБРАБОТКА бесшовные из нержавеющей стали



© 2025 Mash-xxl.info Реклама на сайте