Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ТЕРМИЧЕСКАЯ ОБРАБОТКА Зависимость от примесей

Увеличение содержания углерода в стали приводит к повышению прочности и понижению пластичности (рис. 148). Приводимые механические свойства относятся к горячекатаным изделиям без термической обработки, т. е. при структуре пер-лит+феррит (или перлит+цементит). Цифры являются средними и могут колебаться в пределах 10% в зависимости от содержания примесей, условий охлаждения после прокатки и т. д.2. Если сталь применяют в виде отливок, то более грубая литая структура обладает худшими свойствами, чем это следует из рис. 148 (понижаются главным образом показатели пластичности). Существенно влияние углерода на вязкие свойства. Как видно из рис. 149, увеличение содержания угле-  [c.181]


Если германий содержит примеси п и р-типа, то баланс между ними может изменяться после термической обработки. Схема изменения электросопротивления германия, содержащего п- и р-примеси в зависимости от температуры показана на рис. 182. До i p концентрация п-примесей уменьшается, но увеличивается концентрация р-при-месей и электросопротивление увеличивается. При t — = /,jp эти концентрации уравновешиваются. При t > i> возникает избыток р-примесей, приводящий к уменьшению сопротивления. Закалкой с > кр = 700 С) этот тип проводимости (р-тип) фиксируется при тем-  [c.289]

Кривая, выражающая зависимость времени до разрушения образцов из сплава с концентрацией 7% магния от длительности отжига при температуре 200° С, проходит через минимум [111,211], т. е. режим термической обработки и соответствующая ему структура сплавов существенным образом влияют на интенсивность коррозионного растрескивания. П. Бреннер [111,218] приводит следующий оптимальный режим термической обработки алюминиевых сплавов (с точки зрения чувствительности к коррозионному растрескиванию) нагрев в течение 30 мин при температуре 480° С, затем выдержка в течение 3 мин в соляной ванне при температуре 115° С и охлаждение в воде до температуры 20° С. Медленное охлаждение алюминия, легированного магнием и цинком, увеличивает его стойкость по отношению к коррозионному растрескиванию [111,220]. Сплав алюминия с концентрацией 4,7% магния наиболее чувствителен к коррозионному растрескиванию после отжига при температуре 150° С в течение 168 час [111,221]. В пересыщенных твердых растворах алюминия наличие малых количеств примесей в металле значительно сказывается на чувствительности сплава к коррозии под напряжением [111,218]. Так, сплав алюминия с цинком и магнием, изготовленный из чистых материалов, более чувствителен к коррозионному растрескиванию, чем сплав, содержащий примеси шихтовых материалов.  [c.210]

Характер и степень влияния примесей во многом определяются и химическим составом сплава. Добавление легирующего элемента может значительно сокра-ш,ать предел растворимости примесных элементов в а-фазе титана. Кроме того, легируюш,ие элементы, обладающие большей химической активностью, чем титан, могут образовывать с примесями прочное химическое соединение. И в том и в другом случае отмечается весьма существенное понижение пластичности и вязкости сплава. Примером различной чувствительности сплавов разной легированности к воздействию примесей может служить приведенное в табл. 19 изменение величины ударной вязкости сплавов Ti—6А1—1,5V и Ti—6А1—1,5V—5Zr в зависимости от содержания кремния. Влияние качества структуры полуфабриката, определяемой условиями его термопластической деформации и габаритами, было рассмотрено в предыдущих разделах. В соответствии с изложенным при выборе сплава по справочным данным необходимо учитывать, что приведенные значения механических свойств сплава относятся, как правило, лишь к определенному виду полуфабриката после вполне определенной термической обработки. При изготовлении полуфабриката другого типа и других размеров можно получить комплекс свойств, существенно отличающийся от справочных данных.  [c.65]


Обычно исходные волокна ПАН содержат несколько процентов привитых мономеров. В зависимости от их содержания изменяется характер термического разложения волокон ПАН. Наличие примесей приводит к замедлению образования лестничной структуры на стадии предварительной обработки волокон или к уменьшению скорости образования сшитой молекулярной структуры. Поэтому огнестойкость углеродных волокон зависит от содержания привитых мономеров в исходных волокнах ПАН. Разумеется, необходимо выбрать подходящие условия предварительной обработки для каждого типа волокон ПАН. Это связано с определенными трудностями, так как термическая обработка влияет на прочность при растяжении и другие характеристики углеродных волокон. Поэтому фирмы-изготовители углеродных волокон используют в каждом отдельном случае соответствующие волокна ПАН.  [c.33]

Фазовый состав бронз описывается диаграммами состояния двух основных элементов, например для оловянных бронз диаграммой Си — Sn. Структура и свойства бронз изменяются в зависимости от скорости охлаждения кристаллизующихся сплавов, вида термической обработки и характера обработки давлением. Примеси сурьмы, мышьяка, висмута, серы, цинка и фосфора отрицательно влияют на все виды бронз, понижая их механические и технологические свойства.  [c.206]

Термическую обработку пермаллоев проводят для удаления примесей, остаточных напряжений и укрупнения зерна. Она заключается в медленном нагреве их до 1100 - 1150°С в среде, защищающей материал от окисления (вакууме, водороде), выдержке при этой температуре 3 -6 ч в зависимости от размера и массы, медленном охлаждении до 600 °С (100°С/ч) и дальнейшем быстром охлаждении (400°С/ч), при котором не происходит упорядочения твердого раствора.  [c.538]

Степень влияния легирующих элементов и примесей на коррозионное растрескивание металлов может существенно изменяться в зависимости от индивидуальных свойств металла, характера коррозионной среды и вида предварительной механической и термической обработки.  [c.87]

Скорость нагрева стали при термической обработке следует выбирать в зависимости от марки стали и формы изделия. Чем выше содержание углерода и других примесей в стали, чем сложнее и массивнее деталь, тем медленнее необходимо ее нагревать.  [c.121]

О необходимости термической обработки стали после сварки приближенно судят по максимальной твердости околошовной зоны. Опытом установлено, что в сварных конструкциях, не требующих термической обработки, твердость околошовной зоны и. металла шва после сварки достигает величины не более 280— 300 НВ. Углеродистая сталь с содержанием углерода до 0,35% имеет твердость околошовной зоны 200—250 НВ, поэтому, как правило, не нуждается в термообработке после сварки. Величина твердости околошовной зоны находится в пропорциональной зависимости от содержания углерода и легирующих примесей в стали.  [c.186]

Структура закаленной инструментальной стали состоит из цементита и карбидов. Карбиды могут иметь различную степень измельчения в зависимости от наличия в стали легирующих примесей и режима термической обработки. В мартенсите также содержится некоторый процент остаточного аустенита, который зависит от наличия легирующих примесей и режима термической обработки.  [c.452]

Поскольку модуль упругости характеризует силы междуатомной связи, на его зависимость от температуры очень мало влияет наличие в сплаве различных примесей. Для сталей с небольшим содержанием легирующих элементов эта -зависимость мало отличается от представленной на рис. 104. Пластические свойства и прочность при высоких температурах, наоборот, могут быть очень сильно изменены введением в сплав дополнительных элементов и специальной термической обработкой эти свойства в сильной степени зависят от структуры.  [c.155]

Основные физические рвойства электротехнической стали следующие температура Кюри 0 = 768° С, намагниченность насыщения при 20° С = 2,15 тл (21 580 гс), плотность 7,874 г/см , константа магнитной кристаллической. анизотропии /С = 4,2-10 джУм (4,2-10 эрг/см ), константа магнитострикции может изменяться от 5-10 до —5-10 . Удельное электросопротивление р и магнитная проницаемость .i зависят от содержания в стали примесей, которое может изменяться в зависимости от способа ее получения и условий термической обработки.  [c.132]


В этой книге рассматрявается производство черных металлов в последовательности современной технологической схемы производства 1) выплавка чугуна из железной руды — доменное производство 2) прямое получение желюа и металлизованного сырья 3) выплавка стали из чугуна, металлического лома 4) обработка стальных слитков и заготовок на прокатных станах и получение готовых изделий и полуфабрикатов. Обычно черными металлами называют железо и сплавы железа с различными элементами. Основным элементом, придающим железу разнообразные свойства, является углерод. Сплавы с содержанием углерода до 2,14 % называют сталями, а сплавы с более высоким содержанием углерода — чугунами. Помимо углерода, в состав стали и чугуна входят различные элементы. Легирующие элементы улучшают, а вредные примеси ухудшают свойства железных сплавов. К легирующим элементам относятся марганец, кремний, хром, никель, молибден, вольфрам и др. К вредным примесям — сера, фосфор, кислород, азот, водород, мышьяк, свинец и др. В зависимости от содержания легирующих сталь или чугун приобретают различные свойства и могут быть использованы в той или иной области промышленности. Так, например, инструментальные стали с высоким содержанием углерода используют для изготовления режущего обрабатывающего инструмента. При повышении содержания хрома и никеля стали приобретают антикоррозионные свойства (нержавеющие стали). Стали с повышенным содержанием кремния используют в электротехнике в виде трансформаторного железа и т. п. Чугун с высоким содержанием кремния используют в литейном деле. Для деталей, выдерживающих повышенные нагрузки, применяют высокопрочные чугуны, содержащие хром, никель и т.д. Металл, используемый в промыш-деииости, сельском хозяйстве, строительстве, на транспорте и т.д., имеет различную форму, размеры и физические свойства. Придание металлу требуемой формы, необходимых размеров и различных свойств достигается обработкой слитков стали давлением и последующей термической обработкой. Для получения различной формы изделий применяют свободную ковку, штамповку на молотах н прессах, листовую штамповку, прессование, волочение и прокатку. На прокатных станах обрабатывается до 80 % всей выплавляемой стали, на них производят листы, трубы, сортовые профили, рельсы, швеллеры, балки и т. п.  [c.8]

Приведенные результаты показывают, что спектры поглощений и люминесценции ( форов KI — Sn обусловлены по меньшей мере двумя различными видами центров при наличии в фосфоре только одной активирующей примеси. Зависимость указанных спектров от концентрации активирующей примеси и от термической обработки кристаллов указывает на то, что образование различных центров поглощения и свечения связано с условиями внедрения в решетку и распределения активирующей примеси в кристалле.  [c.257]

Такие данные получены [99, 165] при исследовании твердых растворов (о -Ре ) — Р — С, выплавленных (и разлитых) в вакууме на основе карбонильного, рафинированного в водороде, железа КР чистотой не менее 99,95 % Разная концентрация фосфора в растворе (0,008 0,005 и 0,075 % Р) задавалась при выплавке, а углерода - достигалась науглероживанием в атмосфере гептана или метана. После рекристаллиза-ционного отжига 825°С. 1 ч, образцы диаметром 0,5—0,8 мм с 0,008 %Р охлаждали за 4—6 мин с печью до более низких температур, отжигали при каждой температуре 2 ч для установления равновесного распределения примесей между объемом и границами зерен и фиксировали по лученное распределение примесей закалкой образцов в воде. Термическую обработку проводили с соблюдением специальных мер предосторожности по сохранению неизменнь1м Химического состава тонких образцов (особенно по С) в атмосфере очищенного и осушенного водорода. Науглероживание образцов сплава [=е + 0,008 % Р проводили в установке для термической обработки в течение 90 с в смеси сухого водорода с гептаном при бОО С. Затем для выравнивания возможных неоднородностей распределения углерода по сечению образцов проводили отжиг при 700°С, 1 ч. В серии опытов, проведенных со сплавами Ре + 0,005 % Р и Ре + 0,075 % Р, в которых содержание углерода систематически варьировали, отжиг образцов проводили в атмосфере Нг + + СН4. В этом случае вместо пропускания над сосудов с гептаном, водород перед входом в печь с образцами пропускали через дополнительную печь, заполненную активированным углем. Парциальное давление СН4 в смеси Нг + СН4, определяющее содержание С в Ре, варьировали изменением температуры печи с углем, что позволило "плавно" изме пять содержание углерода в широких пределах. Содержание углерода [С] в а-твердом растворе железа определяли по высоте углеродного пика внутреннего трения (пик Снука), пользуясь известным соотношением для поликристаллического а-железа 1,3 [С]. Для определения температурной зависимости предельной растворимости углерода в а-железе с 0,0СШ % Р отжигом в смеси водород — гептан науглеро-ДИЛИ этот сплав до насыщения в равновесии с карбидной фазой при температуре 720 С соответствующей максимальной растворимости углерода, о достижении которой судили по нась1щению зависимости длительности науглероживания вьюота пика Снука после закалки от 720°С. Обезуглероживания сплавов достигали длительными отжигами в сухом водороде. Контрольные опыты показали, что для достижения  [c.124]

Одним из наиболее существенных неустраняемых посредством усоверщенствования техники эксперимента факторов, вызывающем рассеяние результатов механических испытаний, является неоднородность состава и строения материала в различных образцах. Большая или меньшая неоднородность всех реальных материалов по составу и строению возникает при их изготовлении (выплавке, спекании, кристаллизации, полимеризации, обработке давлением и резанием, термической обработке и т. д.). Если разделить имеющийся объем материала (слиток, поковку, лист, образец и т. п.) на элементы заданного размера (образцы для механических испытаний, объемы с линейными размерами порядка величины зерен или блоков мозаики и т. п.), то содержание каждого из легирующих элементов и примесей, размеры элементов микро- и субмикроструктуры (зерен, блоков, частиц в порошках и т. п.) и их ориентация, наличие трещин, газовой и усадочной пористости и т. д. принимают в зависимости от случая (конкретного выбора размера и расположения элемента в исходном объеме) различные значения. Это говорит о том, что факторы, определяющие состав и строение материала, являются случайными. В качестве примера на рис. 12.1 приведены [3] кривые частот содержания вольфрама в сплаве никеля с 3,2% вольфрама в литом (кривая V) и отожженном (кривая 2) состоянии на площади шлифа 50 мкм . Данные рис. 12.1 показывают, что при среднем содержании 3,2% вольфрама в сплаве на участке площадью 50 мкм встречаются микроучастки, как обогащенные до 4,8%, так и обедненные до 2,2%, и что неоднородность распределения вольфрама несколько уменьшается вследствие отжига.  [c.374]


Быстрорежущая сталь имеет широкое распространение и применяется для изготовления разнообразного сложного фасонного режущего инструмента. Обладая красностойкостью, быстрорежущая сталь применяется для изготовления режущего инструмента, работающего в тяжелых условиях. Качество работы резцов, сверл, фрез и т. п. зависит от качества быстрорежущей стали, тщательности и правильности изготовления режущего инструмента и от правильной его термической обработки. Из всех сталей быстрорежущая сталь является наиболее сложной по своему составу, что объясняется присутствием в ней большого количества специальных элементов. В зависимости от содержания легирующих примесей быстрорежущая сталь подразделяется на высоколегированную и малолегированную.  [c.302]

В цементите нет явно выраженных плоскостей скольжения и, вероятно, поэтому цементит очень тверд и хрупок. В закаленной инструментальной стали цементит (карбид железа РсзС) располагается в мартенсите и оказывает большое влияние как на твердость, так и на сопротивление изнашиванию. Цементит может иметь различную коагуляцию в зависимости от термообработки и легирующих примесей. При нарушении режима термической обработки цементит может выделяться по границам зерен в виде сетки, образуя так называемую цементитную сетку.  [c.451]

Растрескивание магниевых сплавов. Иногда коррозионное растрескивание может в зависимости от условий иметь или меж- или транскристаллитный характер. Показательные примеры этого дают магниевые сплавы. Один из таких сплавов, содержащий алюминий, цинк и марганец в качестве основных легирующих присадок, а железо в виде примеси, подвержен транскристаллитному растрескиванию после одного режима термической обработки, а межкристаллитному — после другого. Транскристаллитное растрескивание, вероятно, связано с фазой РеА1, выделяющейся на плоскости основания гексагональных кристаллов, в то время как межкристаллитное растрескивание связано с соединением Mg 7A1 2, выделяющимся по границе зерен. Подробности этого описаны в интересной работе Приста, Бека и Фонтана [501.  [c.625]


Смотреть страницы где упоминается термин ТЕРМИЧЕСКАЯ ОБРАБОТКА Зависимость от примесей : [c.265]    [c.15]    [c.292]    [c.100]    [c.228]    [c.398]   
Материалы в машиностроении Выбор и применение Том 2 (1968) -- [ c.10 ]



ПОИСК



Зависимость Термическая обработка

Прима

Примеси



© 2025 Mash-xxl.info Реклама на сайте