Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные свойства ударного перехода

Основные свойства ударного перехода. В этом пункте будут установлены четыре важных результата относительно свойств состояний газа перед ударной волной и за ее фронтом.  [c.182]

Основные свойства ударного перехода  [c.183]

В предыдущем параграфе мы получили основные соотношения для прямых скачков уплотнения. В этом параграфе приводятся дополнительные простые и наиболее часто используемые соотношения на скачке и исследуются некоторые из свойств ударных переходов. Большинство уравнений этого параграфа записано в относительной системе координат, т. е. в системе, неподвижной относительно фронта скачка [см. уравнения (2.3), (2.2в), (2.5),  [c.31]


Здесь собраны фундаментальные свойства ударного перехода, т. е. изменения основных величин при переходе через ударную волну. Эти свойства являются общими и верны для любого нормального газа (определение 2.2). Ниже они фиксируются в виде ряда теорем и их следствий.  [c.41]

Хорошо известные экспериментальные наблюдения показывают, что в течении газа могут существовать поверхности, при переходе через которые величины давления и плотности резко меняются. Доводы физического и математического характера в пользу существования таких поверхностей — скачков, или ударных волн,—также хорошо известны и освещены в широком круге работ по газовой динамике. За недостатком места мы этого обоснования не приводим ). Данная глава посвящена основным теоретическим результатам исследования задачи об ударных волнах. Будут выведены, в частности, соотношения на ударном фронте, установлены некоторые простые свойства ударных волн и описана их структура.  [c.172]

Электроконтактная приварка проволоки обеспечивает хорошее соединение покрытия с восстанавливаемой поверхностью, постепенное изменение свойств в зоне перехода между приваренным и основным металлом, наличие зоны сплавления между витками проволоки, проникновение металла последующего валика в предыдущий, что повышает прочность соединения по сравнению со способами сварки, где имеется зона пережога, характеризующаяся низкой прочностью, формированием мелкодисперсной структуры, которая способствует не только увеличению твердости, но и ударной вязкости металла, а в конечном итоге уменьшает интенсивность изнашивания.  [c.329]

У большого числа аморфных полимеров проявляются дополнительные переходы при температуре ниже их основной Тс [4, 47—49]. Эти переходы могут быть связаны с такими механическими свойствами полимеров, как поверхностная энергия разрушения и ударная прочность Дополнительные переходы подробно будут обсуждены в гл. 4.  [c.26]

Здесь и — скорость фронта ударной волны, а величина [ ф]= = (+) — (-) есть скачок соответствующей переменной при переходе через фронт волны, причем знак минус относится к значению переменной непосредственно вверх по потоку -за фронтом, а знак плюс —к значению непосредственно перед фронтом волны. Эти соотношения связывают значения переменных, определяющих поле напряжений и деформаций, перед ударной волной с их значениями за ударной волной и со скоростью распространения разрыва. Они должны быть дополнены еще одним соотношением, которое в рассматриваемой задаче определяет изменение свойств поля вдоль характеристики на плоскости t, X. Эта характеристика соответствует траектории звуковой волны, распространяющейся в положительном направлении вдоль оси X, так что это дополнительное уравнение отражает влияние нелинейности свойств материала на ударную волну. Уравнение характеристики выводится из системы основных дифференциальных уравнений (8), (9) и может быть записано в следующей дифференциальной форме  [c.156]


Никель понижает температуру перехода стали в хрупкое состояние. Это существенно для строительных сталей, снижение ударной вязкости которых при — 40° С не должно превышать 50%. Обычно при —40° С ударная вязкость а — 35 кГ м/см . По сравнению с углеродистыми сталями низколегированные стали обладают меньшей склонностью к термическому и деформационному старению. Низколегированные малоуглеродистые стали хорошо свариваются. Это значит, что они не образуют при сварке холодных и горячих трещин, и свойства сварного соединения и участков, прилегающих к нему (зоны термического влияния), близки к свойствам основного металла.  [c.283]

Требования к пластическим и прочностным характеристикам металла шва должны быть различными в зависимости от типа соединения и условий работы конструкции. Обычно их задают равными аналогичным свойствам основного металла. Это делают скорее по традиции, чем исходя из обоснованных данных, что не всегда оправдано. Тот же подход (т. е. равноценность соответствующим характеристикам основного металла) сохраняется и в отношении стойкости металлов шва и околошовной зоны против перехода в хрупкое состояние. В большинстве случаев регламентируют или величину ударной вязкости при заданной температуре испытания, или значение критической температуры перехода в хрупкое состояние.  [c.172]

Эти стали обладают хорошей свариваемостью. Технология их сварки должна обеспечивать определенный комплекс требований, основными из которых являются равнопрочность сварного соединения с основным металлом и отсутствие дефектов в сварном шве. Для этого механические свойства металла шва и ОШЗ должны быть не ниже нижнего предела механических свойств основного металла. В некоторых случаях конкретные условия работы конструкций допускают снижение отдельных показателей механических свойств сварного соединения. Однако швы не должны иметь трещин, непроваров, пор, подрезов, особенно при сварке ответственных конструкций. Геометрические размеры и форма швов должны соответствовать требуемым. Сварное соединение должно отличаться стойкостью к переходу в хрупкое состояние. Иногда к сварному соединению предъявляются дополнительные требования (работоспособность при вибрационных и ударных нагрузках, пониженных температурах и т.д.).  [c.13]

Основным результатом экспериментального изучения оптических свойств воздуха в ударной трубе является определение сил осцилляторов для важнейших молекулярных переходов.  [c.283]

Проведено комплексное экспериментальное исследование перехода от "свободного" к "несвободному" взаимодействию плоских ударных волн с пограничным слоем в коническом течении и свойств несвободного взаимодействия. Построена модель, позволяющая рассчитывать параметры перехода, определять область существования и основные характеристики несвободного взаимодействия.  [c.57]

Увеличение твердости является основным и весьма эффективным средством повышения износостойкости деталей машин и инструмента, работающих в условиях скольжения по абразиву. При ударно-абразивном изнашивании в хрупкой и вязкой областях разрушения стали ее износостойкость различна. Причем при переходе из одной области в другую наблюдается пороговое изменение износостойкости, т. е. непрерывность этой зависимости нарушается. Как правило, влияние механических свойств стали на ее износостойкость в хрупкой области совершенно иное, чем в вязкой. Максимальная износостойкость стали наблюдается на границе хрупковязкого разрушения.  [c.178]

Основным конструкционным материалом для производства сварных конструкций в течение длительного периода являлась малоуглеродистая сталь (типа Ст.З, Ст.2 и др.), характеризующаяся гарантированной, но невысокой прочностью, высокой пластичностью и хорошей технологичностью, в том числе и свариваемостью. Немаловажное значение имеет и относительная дешевизна этой стали, не содержащей специальных легирующих элементов. Малоуглеродистая сталь наряду с указанными достоинствами имеет и ряд недостатков, из которых важнейшими являются относительно низкая прочность, пониженное сопротивление хрупкому разрушению и повышенная чувствительность к механическому старению. Последние два свойства в значительной мере определяются степенью раскисленности металла (кипящая, по-луспокойная и спокойная) даже лучшая из них — спокойная малоуглеродистая сталь характеризуется невысокими значениями ударной вязкости при минусовых температурах, что в ряде случаев ограничивает область ее применения. Интенсивными исследованиями в последние годы доказано, что применением специальных технологических приемов (регулируемая прокатка, термическое упрочнение и др.) или дополнительным введением в металл модифицирующих элементов (ниобий, ванадий и др.) можно заметно улучшить качественные характеристики малоуглеродистой стали, в том числе и ее сопротивление хрупкому разрушению. Можно преодолеть недостатки малоуглеродистой стали и путем перехода на низколегированные стали (стали повышенной прочности), повышенная прочность и сопротивляемость хрупким разрушениям у которых достигается присадкой легиру ющих элементов и измельчением структуры.  [c.4]


Технологию сварки для этих сталей выбирают из условий соблюдения комплекса требований, обеспечивающих прежде всего равнопрочность сварного соединения с основным металлом и отсутствие дефектов в сварном соединении. Сварное соединение должно быть стойким против перехода в хрупкое состояние, а деформация конструкции должна быть в пределах, не отражающихся на ее работоспособности Металл шва при сварке низкоуглеродистой стали незпачительно отличается по своему составу от основного металла — снижается содержание углерода и повышается содержание марганца и кремния. Однако обеспечение равнопрочности при дуговой сварке не вызывает затруднений. Это достигается за счет увеличения скорости охлаждения и легирования марганцем и кремнием через сварочные материалы. Влияние скорости охлаждения в значительной степени проявляется при сварке однослойных швов, а также в последних слоях многослойного шва. Механические свойства металла околошовной зоны подвергаются некоторым изменениям по сравнению со свойствами основного металла — при всех видах дуговой сварки это незначительное упрочнение металла в зоне перегрева. При сварке стареющих (например, кипящих и полуспокойных) низкоуглеродистых сталей на участке рекристаллизации околошовной зоны возможно снижение ударной вязкости металла. Металл околошовной зоны охрупчивается более интенсивно при многослойной сварке по сравнению с однослойной. Сварные конструкции из низкоуглеродистой стали иногда подвергают термической обработке. Однако у конструкций с угловыми однослойными швами и многослойными, наложенными с перерывом, все виды термической обработки, кроме закалки, приводят к снижению прочности и повышению пластичности металла шва. Швы, выполненные всеми видами и способами сварки плавлением, имеют вполне удовлетворительную стойкость против образования кристаллизационных трещин из-за низкого содержания углерода. Однако при сварке стали с верхним пределом содержания углерода могут появиться кристаллизационные трещины, прежде всего в угловых швах, первом слое многослойных стыковых швов, односторонних швах с полным проваром кромок и первом слое стыкового шва, сваренного с обязательным зазором.  [c.102]

Применение основного металла переменного состава. В ряде случаев требуется исследовать влияние содержания в металле одного или нескольких легирующих элементов или примесей на структуру и свойства (твердость, прочность, пластичность, ударную вязкость, коррозионную стойкость и др.) стали. С эой целью одним из способов, указанных в п. 1, изготовляют слиток из этой стали ПС с содержанием исследуемого элемента в требуемых пределах. Из слитка отковывается пластина, которую используют в качестве основного металла. Технология ковки должна обеспечивать- непрерывное изменение - содержания- - исследуемого- здемента. по длине пластины и постоянное содержание этого элемента по ее ширине. В пластине выстрагиваются продольные и поперечные канавки, имитирующие разделку кромок. Эти канавки завариваются однослойными швами выбранным способом сварки (под флюсом, в защитных газах) с применением обычных присадочных Материалов и режимов сварки (рис. 8, а). Изменение содержания исследуемого элемента в металле швов будет достигаться путем его перехода из основного металла. При этом продольные швы (1) будут иметь металл переменного состава, а поперечные швы 12) — металл постоянного состава, но с различным содержанием  [c.12]

Флюсы флюоритно-основного типа относятся к высокоосновным составам. Они обеспечивают наиболее высокие механические характеристики, особенно пластичность и ударную вязкость, а также стойкость швов к образованию кристаллизационных трещин. Вместе с те.м по сва-рочно-технологически.м свойствам флюсы этого типа часто уступают флюсам рассмотренных выше типов. Их применяют для одно- и многослойной сварки металлоконструкций из высокопрочных сталей ферритно-перлитного, а также сталей ферритно-аустенитного и ферритного классов с высокими требованиями к коррозио1 пой стойкости и к температуре перехода в хрупкое состояние.  [c.297]

Серьезной задачей при электрошлаковой сварке сталей с содержанием более 0,33% С является обеспечение равнопрочности металла шва с основным металлом. Эта задача частично решается путем применения сварочных проволок Св-10Г2 или Св-12ГС и перехода углерода из основного металла. Содержание углерода в шве доходит до 0,22—0,24%. Однако даже при этом прочностные свойства металла шва находятся на нижнем уровне свойств основного металла (см. табл. 9-19). Для повышения прочности металла шва рекомендуется применять сварочную проволоку, обеспечивающую многокомпонентное легирование. Высокой ударной вязкости металла шва и участка крупного зерна околошовной зоны для сталей этой группы так же, как и для низкоуглеродистых сталей, можно достигнуть пока только нормализацией.  [c.493]

Ток наплавки для электродов ОЗН, в зависимости от веса детали, степени ее предварительного подогрева и толщины основного металла, принимается в среднем для электродов диаметром 4 мм в пределах от 170 до 220 а и для электродов диаметром 5 мм —от 210 до 240 а. Коэффициент наплавки составляет 8—9 Г/а-ч и переход металла стержня в шов от 85 до 95%. Наплавленный металл третьего и последующих слоев представляет перлитную марганцовистую сталь с высокими механическими свойствами предел прочности на растяжение составляет 71—75 кПмм относительное удлинение — около 17% и ударная вязкость 4,4—6,5 кГм1см .  [c.54]


Так, за 20-25 лет эксплуатации МГ служебные свойства основного металла (сталь 17Г1С) претерпели следующие изменения предел текучести и предел прочности вырос на 5-10%, предельная пластичность уменьшилась на 15- 30%, удельная работа пластического разрушения уменьшилась на 20-30%, ударная вязкость КСУ уменьшилась на 30-40%, произошло смещение температуры хрупко-вязкого перехода в область повышенных температур. Фактически происходит снижение характеристик трещиностойкости металла и повышается чувствительность конструкции к дефекгам.  [c.235]


Смотреть страницы где упоминается термин Основные свойства ударного перехода : [c.248]    [c.30]    [c.63]    [c.97]    [c.34]   
Смотреть главы в:

Математические основы классической механики жидкости  -> Основные свойства ударного перехода



ПОИСК



Мер основные свойства

Свойства р-н-перехода



© 2025 Mash-xxl.info Реклама на сайте