Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Классические кинетические корреляции

КЛАССИЧЕСКИЕ КИНЕТИЧЕСКИЕ КОРРЕЛЯЦИИ 225  [c.225]

Теперь вычислим в явном виде выражение (17.3.16) для кинетических корреляций в (классическом) газе со слабым взаимодействием. В этом выражении появляется только один новый оператор С% (т)У его разложение, согласно (17.1.7) и (16.3.5), начинается с члена порядка X  [c.224]

Происхождение наиболее важных долгоживущих корреляций уже осуждалось в разделе 3.3.4 в рамках классической кинетической теории.  [c.288]

Подведем итоги. Мы убедились в том, что с точки зрения общей теории неравновесных процессов стандартный метод временных функций Грина основан на граничном условии полного ослабления корреляций в отдаленном прошлом, которое эквивалентно граничному условию Боголюбова к цепочке уравнений для классических функций распределения или квантовых многочастичных матриц плотности. Как мы знаем, при таком выборе граничного условия корреляционные эффекты проявляют себя как эффекты памяти в кинетических уравнениях. Поэтому марковские кинетические уравнения, получаемые в стандартном методе функций Грина, применимы только к системам, которые достаточно хорошо описываются в рамках модели слабо взаимодействующих квазичастиц. Для систем с сильными корреляциями нужно вводить новые граничные условия, учитывающие динамику корреляций в системе. Обратим внимание на то, что предельные значения (6.3.108) временных функций Грина выражаются через квази-равновесные функции G , в которых усреднение производится со статистическим оператором зависящим от времени через макроскопические наблюдаемые Р У. Таким образом, соотношение (6.3.108) показывает, что в общем случае предельные гриновские функции зависят от макроскопической эволюции системы. Иначе говоря, уравнения движения для временных гриновских функций должны рассматриваться совместно с уравнениями переноса для Р У. В параграфе 4.5 первого тома был рассмотрен пример такого объединения квантовой кинетики с теорией макроскопических процессов в методе неравновесного статистического оператора. Соответствующая техника в методе функций Грина пока не разработана, так что читателю предоставляется возможность внести свой вклад в решение этой проблемы.  [c.62]


Нерешенной проблемой квантовой кинетической теории остается учет неравновесных многочастичных корреляций. В параграфе 4.3 первого тома было получено квантовое обобщение кинетического уравнения Энскога, в котором учитываются корреляции, связанные с законом сохранения энергии. Классическое уравнение Энскога применялось и до сих пор успешно применяется для описания кинетических процессов в плотных газах. Это позволяет предположить, что и в квантовых системах основную роль играют многочастичные корреляции, связанные с сохранением энергии. К сожалению, интеграл столкновений в квантовом уравнении Энскога имеет гораздо более сложную структуру, чем в классическом случае, поэтому для решения конкретных задач требуется разработка эффективных численных методов.  [c.283]

В общем случае, когда существенны корреляции (соударения) между частицами, классическая среда описывается кинетическим уравнением, а уравнения гидродинамики вытекают из них как некоторое приближение. Для баротропной жидкости эти уравнения отличаются от (10) лишь добавлением величины —Vw к правой части уравнения Эйлера, где п) п) — тепловая функция. Для учета вязкости нужно добавить туда же величину  [c.236]

В гл. 6 уже обсуждался вопрос о выводе кинетического уравнения для классических Я-систем. Обычная процедура получения кинетического уравнения связана с использованием гипотезы об ослаблении корреляций или эквивалентного ей допущения (например, приближения хаотических фаз). Это приближение позволяет ввести сокращенное описание системы в виде кинетического уравнения. Однако, как было показано в гл. 6, если известно, что динамическая система является Я-системой, то никаких гипотез для получения кинетического уравнения не требуется. Сокращение описания возникает автоматически вследствие существования процесса перемешивания в фазовом пространстве по одной из переменных системы. По этой же переменной происходит и быстрое ослабление корреляций. Аналогичное утверждение (с определенными оговорками) можно сделать и для квантовых Я-систем.  [c.198]

Кинетический коэффициент 389, 399 Кирквуда приближение 344, 351 Классический предельный переход 19, 22, 45, 158, 200, 203, 250 Кнудсеновская область 413 Ковариации (корреляции) матрица 408-410  [c.445]

Напомним, что основы классической кинетической теории были заложены Максвеллом [123] и Больцманом [60] более 100 лет назад. Нри выводе своего знаменитого кинетического уравнения для разреженного газа Больцман выделил два механизма изменения одночастичной функции распределения со временем динамический процесс инерционного движения молекул и стохастический процесс парных столкновений. Больцман привлек гипотезу молекулярного хаоса (Stofizahlansatz), согласно которой перед каждым столкновением между молекулами, участвующими в столкновении, отсутствуют корреляции. Если плотность газа мала, то это интуитивное допущение Больцмана кажется вполне разумным, но оно явно не выполняется для более плотных систем, когда необходимо учитывать многочастичные столкновения. Более общий метод вывода кинетических уравнений был разработан Боголюбовым в его монографии [7], существенно повлиявшей на все последующее развитие кинетической теории. В методе Боголюбова кинетическое уравнение выводится из уравнения Лиу-вилля с граничным условием ослабления начальных корреляций между частицами. Это условие, налагаемое лишь один раз в отдаленном прошлом, заменяет больцманов-ский Stofizahlansatz. Главным достоинством метода Боголюбова является то, что он указал путь к выводу более общих кинетических уравнений, чем уравнение Больцмана или его простейшие модификации.  [c.163]


Переходя к кинетической теории плотных квантовых систем с сильным взаимодействием между частицами, мы должны иметь в виду, что динамику многочастичных корреляций и эволюцию одночастичной матрицы плотности теперь приходится описывать, по существу, на одной и той же шкале времени ). Если в начальном состоянии отсутствуют корреляции между частицами, то для восстановления всех долгоживущих корреляций требуется значительное время. Иначе говоря, квантовая кинетическая теория, основанная на граничном условии, которое вводится с помощью квазиравно-весного статистического оператора (4.1.32), будет существенно немарковскощ т. е. в кинетическом уравнении для одночастичной матрицы плотности важную роль будут играть эффекты памяти. Решать немарковские кинетические уравнения очень сложно. В большинстве задач эффекты памяти удается учесть только в первом приближении, т. е., фактически, для слабо неидеальных систем ). Поэтому кажется разумным попытаться сохранить марковский вид уравнений эволюции, расширив набор базисных динамических переменных. В контексте классической кинетической теории эта идея уже обсуждалась в разделе 3.3.4. Теперь мы хотим распространить ее на квантовые системы.  [c.288]

Вскоре после статьи Ван Хова появилась работа Браута и Пригожииа, открывшая многочисленную серию работ, выполненных так называемой брюссельской школой . При этом основная идея заключалась в введении фурье-разложения функции распределения и последовательном применении переменных угол—действие (в классической механике). Такое представление продемонстрировало роль раздельного анализа различных типов корреляций (т. е. динамики корреляций). При этом также в асимптотическом пределе Я О, t оо (Я 4 — конечная величина) было получено необратимое основное кинетическое уравнение для iV-частичной функции распределения по импульсам (играющей роль вакуума в этом представлении)  [c.217]

Кинетическое уравнение для одночастичной матрицы плотности можно вывести из квантового уравнения Лиувилля различными способами. В частности, для этого достаточно построить статистический оператор g t), удовлетворяющий граничному условию ослабления корреляций в отдаленном прошлом, и выразить его через ква-зиравновесный статистический оператор Qq t) который, в свою очередь, зависит от одночастичной матрицы плотности. Такой метод оказывается особенно удобным для систем со слабым взаимодействием частиц, так как он позволяет построить интеграл столкновений, исходя только из общих свойств системы. Вывод квантовых кинетических уравнений с помощью этого метода дается в параграфе 4.1. Другой подход к квантовой кинетической теории основан на цепочке уравнений для 5-частичных матриц плотности которые аналогичны классическим 5-частичным функциям распределения. В случаях слабого взаимодействия между частицами или малой концентрации частиц, квантовую цепочку уравнений можно решить с помощью теории возмущений. Некоторые разновидности этого подхода изложены в книгах [35, 57]. В параграфах 4.2 и 4.3 мы рассмотрим квантовую цепочку уравнений с точки зрения метода неравновесного статистического оператора. Вначале мы построим групповое разложение интеграла столкновений для систем с малой плотностью, а затем обобщим метод на плотные квантовые системы.  [c.248]


Смотреть страницы где упоминается термин Классические кинетические корреляции : [c.244]    [c.10]   
Смотреть главы в:

Равновесная и неравновесная статистическая механика Т.2  -> Классические кинетические корреляции



ПОИСК



Газ классический

Корреляция



© 2025 Mash-xxl.info Реклама на сайте