Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Редукторы планетарно-цилиндрические

Редукторы планетарно-цилиндрические  [c.300]

Электроприводы нормального исполнения с присоединением типа М с двухсторонней муфтой ограничения крутящего момента (рис. 3.81) предназначены для управления трубопроводной арматурой в конструкциях с максимальным крутящим моментом до 25 Н-м. Электропривод состоит из планетарно-цилиндрического редуктора, электродвигателя, узлов ручного дублера, путевых и мо-ментных выключателей. В алюминиевом литом корпусе смонтированы редуктор  [c.180]


Редукторы планетарные — Схемы 127 — Число степеней свободы 128 --с цилиндрическими зубчатыми колесами — Параметры основные — Выбор 831—833  [c.995]

I — плоскоременная передача 2 — клиноременная передача 3 - передача с трехрядной цепью ПРУ 4 - редуктор одноступенчатый цилиндрический 5 — планетарный редуктор  [c.201]

Конструкции одноступенчатых мотор-редукторов с цилиндрической, планетарной и волновой передачами описаны в работе [18].  [c.269]

Колеса зубчатые цилиндрические передач Новикова. Модули Редукторы планетарные. Основные параметры  [c.72]

Сопоставление различных типов редукторов по габаритам показывает, что при малых передаточных числах наибольшие размеры имеют червячные редукторы, наименьшие — планетарные с высокой твердостью поверхностей зубьев. На рис. 21.2 представлены совмещенные габариты редукторов а — для мощности N — 37 кет и передаточного числа 1 = 7 б — для N = = 18,5 кет и / = 21 в — N = 9 кет и / = 50 1 — червячный редуктор с цилиндрическим червяком (обод колеса изготовлен из оловянистой бронзы) 2 — глобоидный редуктор 5 —редуктор с цилиндрическими зубчатыми колесами 4 — планетарный редуктор. С увеличением передаточного числа относительные размеры червячных и глобоидных редукторов уменьшаются [5].  [c.328]

Выражение (10.38) для передаточного отношения в планетарном редукторе с двумя коническими колесами совпадает с выражением (10.37), полученным для планетарного редуктора с цилиндрическими колесами. Так же, как и в случае цилиндрических колес с внутренним зацеплением, потери на трение зубцов конических колес при малом значении угла а незначительны. Это объясняется тем, что при Малом значении а и малой разности чисел зубцов 21 и 2а мала и угловая скорость относительного движе-  [c.356]

Главным параметром редуктора для цилиндрических и червячных передач является межосевое расстояние тихоходной ступени ят, для планетарных — радиус водила R, для волновых — внутренний диаметр гибкого колеса  [c.413]

В планетарных редукторах с цилиндрическими колесами основным параметром считается расстояние между осями подвижного центрального колеса и сателлита. Оно находится из условия контактной прочности зубьев.  [c.288]


Вследствие сложности конструкция эта распространения не получи.да, и современные планетарные редукторы с цилиндрическими шестернями употребляются без уравнительного механизма, что стало возможным благодаря высокой точности производства.  [c.466]

Материал в пособии размещен в том порядке, в котором следует работать над проектом. Все сведения, необходимые для выполнения очередного этапа расчетов и конструирования, расположены в одном месте. Даны варианты типовых конструкций полные примеры расчетов и конструирования основных типов редукторов , зубчатых цилиндрического и конического червячного, планетарного.  [c.4]

Колеса зубчатые модуль Передачи зубчатые цилиндрические межосевые расстояние номинальное передаточное число коэффициент ширины зубчатых колес Колеса зубчатые цилиндрические передачи Новикова модуль Редукторы планетарные  [c.35]

Планетарный редуктор. Так же как и для цилиндрического, основное влияние на массу редуктора оказывает вид термообработки. В качестве рационального нужно выбрать вариант с меньшей массой, по с возможностью размещения подшипника в сателлите.  [c.331]

В некоторых планетарных редукторах применяют конструкции сателлитов с вращающимися осями. На рис. 14.22, а показано наиболее простое исполнение. При исполнении по рис. 14.22, б в качестве опор могут быть применены радиальные двухрядные сферические шариковые или роликовые подшипники. Применяют также радиальные подшипники с короткими цилиндрическими роликами (рис. 14.22, в). На рис. 14.22, г приведена конструкция с гладкой осью.  [c.233]

Обозначения типоразмеров редукторов складываются из прописных первых букв их наименований (Ц — цилиндрический, конический, П — планетарный), числа ступеней, основного параметра (мм) тихоходной ступени (межосевого расстояния, диаметра основания делительного конуса, радиуса водила) и передаточного отношения. В начале обозначения мотор-редукторов добавляется буква М.  [c.210]

В планетарном редукторе (рис. 9.8) с цилиндрическими зубчатыми колесами эвольвентного профиля действуют два момента Ml —на подвижное колесо 1 и УИ —на водило Н. Заданы момент Мн сопротивления основные параметры стандартных колес количество зубцов гь г , и г модуль зацепления m и угол зацепления а. Определить момент и реакции в кинематических парах редуктора. Колесо 3 неподвижно.  [c.139]

Обозначение типоразмера редуктора складывается из его типа и главного параметра его тихоходной ступени. Для передач цилиндрической и червячной главным параметром является межосевое расстояние а , мм конической — внешний делительный диаметр колеса мм планетарной — радиус водила R, мм волновой — внутренний посадочный диаметр гибкого колеса в недеформируемом состоянии d, мм.  [c.262]

На рис. 10.5, а изображена кинематическая схема двухступенчатой соосной передачи с цилиндрическими колесами и неподвижными осями вращения. Произведем в ней следующие изменения (рис. 10.5, б). Свяжем корпус подшипников промежуточного вала колес (2—2 ) с выходным валом, который предварительно отсоединим от колеса 3, а само колесо укрепим на корпусе редуктора. Теперь вал, несущий колеса 2—2, будет совершать сложное планетарное движение (вращаясь вокруг своей оси и одновременно вместе с корпусом его подшипников вокруг общей оси входного и выходного валов). Такая передача называется планетарной. Она состоит из двух центральных колес I п 3 (колесо 3 закреплено да корпусе редуктора и потому неподвижно), водила Н назыв К  [c.277]

Классификация. По назначению различают редукторы главные и вспомогательные по конструкции — переборные, планетарные и комбинированные по направлению вращений — нереверсивные и реверсивные по виду зубчатых колес — цилиндрические и конические по числу зубчатых пар — одно- и многоступенчатые по расположению осей валов — горизонтальные и вертикальные по типу передач — цепные, гнездовые и с раздвоением мощности (рис. 2.15).  [c.45]


Возможность реализации здесь сравнительно больших передаточных отношений, не выходя из границ обычно принятых соотношений для радиусов и чисел зубьев, применяемых цилиндрических колес, и служит причиной широкого распространения этого вида редуктора. Как ускорительный механизм, он находит применение в сельскохозяйственных машинах, в приводе типографских машин и др. Кроме того, как будет разобрано во 2-м томе книги, этот редуктор обладает очень хорошим к. п. д., мало зависящим от передаточного отношения, что делает его очень ценным в практике способным с одинаковым эффектом работать как на повышение числа оборотов, так и на понижение. Последнего нельзя сказать о многих других планетарных приводах, которые будем рассматривать ниже.  [c.521]

До последнего времени не были известны планетарные механизмы, имеющие большие передаточные отношения, порядка нескольких тысяч, при которых эти механизмы обладали бы обратным ходом. Хорошо известный в машиностроении редуктор Давида при известных условиях (на прямом ходу) может осуществить передаточное отношение 10 000 и больше, а при обратном ходе — обнаруживает явление самоторможения уже при передаточном отношении 5—16, в зависимости от условий его изготовления и смазки. Между тем, некоторые отрасли промышленности, например приборостроение и, в частности, часовая промышленность, как раз заинтересованы в механизмах, обладающих значительным передаточным отношением и работающих на ускоренный ход. Например, в обыкновенных часах имеется ускорительный механизм с передаточным отношением порядка I = = 600, осуществленным путем последовательного соединения многих пар цилиндрических зубчатых колес. Было бы весьма заманчиво заменить его другим механизмом, содержащим меньшее число зубчатых пар, но обладающим тем же кинематическим и механическим эффектом. К сожалению, применение здесь планетарных механизмов обычного типа исключается ввиду их необратимости — невозможности использовать их в качестве ускорительных механизмов. Однако ту же задачу можно выполнить путем применения схемы так называемых эксцентриковых планетарных механизмов.  [c.420]

Анализ динамических характеристик планетарного редуктора обычно про изводится на основе модели, состоящей из сосредоточенных масс и жесткостей. В тех случаях, когда целью расчета является определение минимальных частот системы, такая модель дает вполне удовлетворительные результаты. Однако, если необходимо исследовать спектр колебаний в более широком диапазоне частот, то предпочтительно использовать решения уравнений движения элементов с распределенными параметрами. В частности, такого подхода требует рассмотрение колебаний блокирующих муфт, зубчатых барабанов и прочих деталей планетарного редуктора, выполненных в виде составных цилиндрических оболочек.  [c.18]

В некоторых конструкциях осуществляется низкий подъём натягиванием платформы на наклонные плоскости при помощи цепей,приво-димых в действие электродвигателем с цилиндрическим планетарным редуктором. Целесообразно применять для низкого и высокого подъёма один и тот же редуктор. В случае низкого подъёма насаживаются на выходной вал эксцентрики, а в случае высокого— цепные звёздочки.  [c.1029]

В современных конструкциях правйльных и гибочных мащин в e тo гро>лоздких шестеренных клетей и редукторов с цилиндрическими колесами (см. поз. 18 парне. 38.7) стали применять планетарные редукторы, что резко снижает массу привода и его габариты.  [c.495]

Фирма Даймлер-Бенц (ФРГ) для грузовых автомобилей с двигателями увеличенной мощности разработала и приняла к производству новое семейство ведущих мостов, главные передачи которых сконструированы в виде двойных разнесенных редукторов. Они состоят из центрального редуктора с конической парой шестерен с круговыми зубьями (у трехосных автомобилей центральный редуктор проходного типа с дополнительными двумя цилиндрическими зубчатыми колесами переднего расположения и межмостовым дифференциалом) и колесного редуктора планетарного типа с пятью узкими сателлитами (шириной 31—42 мм в зависимости от назначения автомобиля).  [c.248]

Остановимся на обозначении сборочного чертежа одноступенчатого редуктора. Оно отражает буквы — тип редуктора (РЦ — цилиндрический, РК — конический, РП — планетарный, РЧ — червячный, РВ — волновой) и расположение валов в пространстве ли вертикален ведущий вал, то указывается индекс Б, если ведомый — Т при горизонтальных валах индексы опускаются) цифры через дефис указывают соответственно межосевое расстояние и вариант сборки, определяющий расположение выходных концов валов (табл. 10.1), затем даны две пары нулей. Например, сборочный чертеж цилиндрического редуктора с горизонтальными валами, мек-осевым расстоянием 160 мм, при варианте сборки 12 обозначается РЦ-160-12-00.00СБ червячного редуктора с вертикальным червяком, межосевым расстоянием 125 мм, выполненный по сборке 53, обозначается РЧ Б-125-53-00. ООСБ мотор-редуктора планетарного типа с радиусом водила 125 мм—МРЦ-125-00. ООСБ  [c.195]

РЕДУКТОР ПЛАНЕТАРНО-КОНИЧЕСКО-ЦИЛИНДРИЧЕСКИЙ ГОРИЗОНТАЛЬНЫЙ ТИПА ПКЦ-49  [c.130]

Литьевая маншна предназначена для литья под давлением тонкостенных алюминиевых деталей. Вращение от электродвигателя И (рис. 6.29, б) передается через планетарный редуктор 2 и зубчатую цилиндрическую пару на вал кривошипа 1. Основной рычажный кривошипно-ползунный механизм нагнетания расплавленного металла (рис. 6.29, а) преобразует вращательное движение кривошипа посредством шатуна 2 в возвратно-поступательное движение ползуна 3, движущегося в направляющих 4. График изменения сил сопротивления нагнетания па ползуне 3 (пресс-поршне) показан на рис. 6,29, в. При движенни ползуна 3 влегю (рабочий ход) сила сопротивления возрастает, а на холостом ходу она примерно равна нулю.  [c.260]


Вышеперечисленные критерии являются весьма важными. Варьируемые параметры, нанример, в зубчатых приводах, - это распределение передаточного отношения между ступенями редуктора, относительная П1ирина колес, материал колес, геометрия зацепления, передаточные отношения редуктора (частота вращения вала электродвигателя при заданной постоянной частоте вращения выходного вала) и др. Основное распространение получила параметрическая оптимизация, обеспечивающая оптимальные параметры элементов заданной структуры. Кроме того, можно варьировать типы объектов, например, типы редукторов (цилиндрические, червячные, планетарные и др.) — структурно-параметрическая оптимизация. Она предусматривает и совершенствование структуры изделия.  [c.53]

Классификация редукторов проводится по следующим основнылт признакам тип передачи (зубчатые, червячные, комбинированные, планетарные, волновые и планетарноволновые), число ступеней (одноступенчатые, двухступенчатые и т. д.), тип зубчатых колес (цилиндрические, конические, волновые), относительное расположение валов в пространстве (горизонтальное, вертикальное и т. д.). Специальным типом весьма компактной приводной установки является так называемый мотор-редуктор (см. рис. 3.99).  [c.490]

Механизм 1-й. Схема двухшкального механизма потенциометрической следящей системы, устанавливаемого на настраиваемом аппарате, приведена на рис. 29.7. Угловые перемещения валика исполнительного элемента аппарата, связанного муфтой 6 с выходным валиком механизма, осуществляются от электродвигателя Дв через волновой зубчатый редуктор ВЗР, пару цилиндрических зубчатых колес 1 к2, планетарный механизм и пару зубчатых колес 5 и 6. Водило Н планетарного механизма закреплено на полом валике колеса 2. На водиле закреплена шкала точного отсчета  [c.416]

Консп рукция механизма показана на рис. 29.10, а, б. В нем применен одноступенчатый волновой редуктор с неподвижным гибким колесом и генератором волн свободной деформации гибкого колеса. Шкалы точного и грубого отсчета ШГО и ШТО цилиндрические (рис 29.10, б). Правый подшипник валика колеса 2 и водила Н закреглен в расточке неподвижного центрального колеса 4 планетарной передачи. Это колесо прикреплено тремя винтами и штифтом 1 скобе 3, которая крепится винтами 7 к главной панели корпуса 1. Плоская панель 1 корпуса имеет форму прямоугольника с четырьмя отверстиями по углам для винтов, посредством которых она креп1 тся к аппарату. Овальная крышка 5 корпуса имеет на боковой стенке окно со стеклом для снятия отсчета со шкал. На выходном валике механизма, соединяемом муфтой 6 с исполнительным элементом аппарата, установлено двойное зубчатое колесо 6 с пружинным устройством для уменьшения мертвого хода. Ме.ханизм разделен на узлы, удобные для сборки.  [c.419]

Важное значение для машиностроения имело развитие теории механических передач, т. е. различных зубчатых механизмов. Геометрия плоского-и пространственного зацепления начала развиваться еше до Великой Отечественной зойны на базе работ X. И. Гохмана и Н. И. Мерцалова. В первую очередь б ла развита теория эвольвентной цилиндрической зубчатой передачи. Развитие этой теории и методов профилирования зубьев тесно, увязывалось с технологическими процессами обработки зубчатых колес. После войны существенное развитие получает теория некруглых зубчатых механизмов, нашедших применение в приборостроении. В последнее десятилетие внимание исследователей было посвящено геометрии ирострапствен-ных зацеплений. Получены новые виды зацеплений, изучены динамические характеристики различных зацеплений, разработаны инженерные методьг их расчета и проектирования. Существенное внимание уделялось синтезу сложных зубчатых механизмов. Особенное внимание уделено методам проектирования редукторов дифференциальных, планетарных и с неподвижными осями колес. Некоторое развитие получили методы анализа и синтеза бесступенчатых передач.  [c.28]

Методика расчета вынужденных колебаний системы из соосных цилиндрических оболочек, колец и пластин основывается на разложении амплитудной функции в ряд по собственным формам недемпфированной системы. Приводится описание алгоритма расчета, по которому в ГОСНИИМАШ составлены программы применительно к ЭЦВМ Минск-32 . Применение методики иллюстрируется на примере расчета динамических податливостей подвески планетарного ряда редуктора.  [c.6]

ГОСТ Р 50968-96 распространяется на зубчатые цилиндрические, планетарные, волновые, червячные и цилиндрическо-червячные мотор-редукторы общемашиностроительного применения, предназначенные для приведения в действие машин, механизмов и оборудования.  [c.663]

Bbtx = 125-у/ ых" - ДЛЯ одноступенчатых редукторов цилиндрических, конических и планетарных  [c.665]


Смотреть страницы где упоминается термин Редукторы планетарно-цилиндрические : [c.236]    [c.236]    [c.236]    [c.44]    [c.98]    [c.98]    [c.268]    [c.4]    [c.408]    [c.417]    [c.262]    [c.664]   
Смотреть главы в:

Редукторы конструкции и расчет  -> Редукторы планетарно-цилиндрические



ПОИСК



Задание К-П. Определение угловых скоростей звеньев планетарного редуктора с цилиндрическими колесами

К п планетарных

Редуктор планетарно-коническо-цилиндрический горизонтальный типа ПКЦ

Редуктор планетарный

Редуктор трехступенчатый планетарно-коническо-цилиндрический типа ПКЦ

Редукторы планетарные Схемы с цилиндрическими зубчатыми колесами — Параметры основные — Выбо

Редукторы цилиндрические



© 2025 Mash-xxl.info Реклама на сайте