Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Силы упругости и закон Гука при деформации сдвига

УПРУГИЕ СИЛЫ и ЗАКОН ГУКА ПРИ ДЕФОРМАЦИИ СДВИГА  [c.72]

В чем состоит закон Гука Как он математически записывается в общей форме Приведите запись закона Гука для абсолютней деформации растяжения и сдвига. От чего зависит коэффициент пропорциональности между силой упругости и абсолютной деформацией при растяжении и сдвиге  [c.81]


В твердом теле, подчиняющемся закону Гука, часть энергии тратится на работу сил упругих деформаций. Если считать, что причиной появления таких деформаций является неравномерное температурное поле, то при отсутствии напряжений сдвига (всестороннее растяжение или сжатие) работа сил внутренних напряжений в единице объема, производимая в единицу времени, определится следующим выражением [Л. 33]  [c.17]

Абсолютный сдвиг прямо пропорционален сдвигающей силе, расстоянию между сдвигаемыми гранями и обратно пропорционален площади сечения этих граней и модулю упругости при сдвиге. То есть мы имеем формулу, выражающую закон Гука для деформации сдвига, вполне подобную формуле для вычисления абсолютного удлинения при растяжении  [c.126]

В главе последовательно выводятся все уравнения линейной теории упругих тонких оболочек на основе единого подхода, свя-ванного с пренебрежением слагаемыми порядка A/J o по сравнению с единицей, что соответствует (как было установлено в работах 1122,123]) погрешности исходных допущений — гипотез Кирхгофа (см. введение, допущения kw kk). При этом замечено, что геометрическое допущение (k) нуждается в некотором уточнении, а именно следует пренебрегать сдвигами е , не вообще (что в соответствии с законом Гука привело бы к пренебрежению перерезывающими силами Гщ, Tgn), а лишь при вычислении деформаций параллельной поверхности.  [c.15]

Чтобы заставить элемент снова принять ту форму, какую он имел при связи с остальным телом, мы должны приложить к нему напряжения о, и т. д. и и т. д., которые вызвали бы в нем относительные удлинения е, и т. д. и сдвиги и т. д., бывшие у элемента в то время, когда он составлял одно целое со всем телом. Связь между напряжениями и деформациями е и у определяется упругими свойствами материала тела. Нам нужно поэтому ввести определенное предположение относительно этой связи, и здесь мы, так же как и во всей книге, примем наиболее простое предположение, что материал изотропен, т. е. во всех направлениях имеет одинаковые свойства и что он подчиняется как закону Гука, так и вообще закону сложения действия сил тогда между напряжениями и т. д. и деформациями и т. д. будут иметь место соотношения, о которых мы уже говорили подробно в первой главе нашей книги.  [c.252]

Кривая ВС от точки С переходит в горизонтальную или почти горизонтальную прямую СП, что указывает на значительное возрастание удлинения при постоянном значении силы материал, как говорят, течет. Напряжение ат> определяемое ординатой горизонтального участка диаграммы, при котором наблюдается текучесть материала, называется пределом текучести. При этом напряжении происходит значительный рост пластической (остаточной) деформации. Когда напряжения в материале достигают предела текучести, полированная поверхность образца тускнеет и постепенно делается матовой. На ней появляются линии, наклоненные к оси образца под углом примерно 45° (рис. 73, б). Эти линии носят название линий Людерса — Чернова, их появление свидетельствует о сдвиге кристаллов образца. За площадкой текучести СО следует пологий криволинейный участок диаграммы ОЕ. Материал вновь начинает сопротивляться росту деформаций, но, естественно, зависимость между деформацией и напряжением уже не подчиняется закону Гука. Кроме упругого удлинения образец получает значительное остаточное удлинение. Участок ПЕ диаграммы называют зоной упрочнения, материал здесь снова оказывает сопротивление деформациям.  [c.75]


Выражения (1.11)—(1.13) представляют собой варианты математической записи закона Гука. Таким образом, изотропные твердые тела характеризуются только двумя независимыми постоянными, которые называют модулями упругости. Это могут быть, например, постоянные Ламе Я, и или величины К и и. Пользуются также другими парами модулей упругости, удобными для использования в тех или иных конкретных задачах. Это модуль Юнга Е и модуль сдвига [г, а также широко используемая в теории упругости пара— модуль Юнга Е и коэффициент Пуассона о. Последний дает связь между относительным продольным растяжением (сжатием) упругого стержня и его поперечным относительным сжатием (растяжением) 22 при приложении к стержню однородной в поперечном направлении растягивающей (сжимающей) силы /1, приходящейся на единицу площади (однородные деформации) —0Мц. Связь между парами ЛГ, 1 и , а такова  [c.192]

Формулы (24.4) и (24.5) - (24.6) выражают закон Гука для деформаций изгиба и кручения. Таким образом, закон Гука для всех рассмотренных видов упругих деформаций констатирует пропорциональность некоторой силовой характеристики, являющейся мерой силового воздействия (напряжение, сила, момент сил), и геометрической величины, характеризующей деформацию (относительные удлинение и сдвиг, стрела прогиба, угол кручения). При этом в законе Гука для фундаментальных деформаций растяжения-сжатия (24.2) и сдвига (24.3) коэффициенты пропорциональности - модуль Юнга и модуль сдвига - зависят только от свойств вещества. В случаях деформаций изгиба и кручения, которые сводятся, соответственно, к неоднородным растяжению-сжатию и сдвигу, эти коэффициенты в формулах (24.4) и (24.5) зависят от модулей соответствующих деформаций, а также от размеров тела.  [c.82]

Энергия деформации, накопленная в элементе, испытывающем чистый сдвиг (рис. 268), может быть вычислена по методу, примененному в случае простого растяжения. Если нижнюю грань аЛ элемента принять закрепленной, то необходимо рассмотреть лишь работу, произведенную силой Р при деформации верхней грани Ьс. Полагая, что материал следует закону Гука, находим, что относительный сдвиг пропорционален касательному напряжению и диаграмма, изображающая эту зависимость, аналогична диаграмме, показанной на рис. 262. Тогда работа, произведенная силой Р и накопленная в фюрме энергии упругой деформации, будет равняться (см. уравнение 170, стр. 255)  [c.264]

В теории упругости термин чистый изгиб призматического бруса подразумевает такую деформацию, при которой, кроме условий (12.1), имеет место строго определенное распределение на торцах поверхностной нагрузки, статическим эквивалентом которой являются моменты Ш, а именно распределение этой нагрузки по линейному — в зависимости от у (или х) — закону, если чистый изгиб происходит в плоскости Оуг Охг). При этом во всем брусе отсутствуют не только поперечные и продольные силы и крутящий момент, но и самоуравновешенные в пределах поперечного сечения напряжения, в том числе касательные напряжения, д следовательно, если учесть закон Гука, то отсутствуют и сдвиги.  [c.97]

Различают два простейших вида упругой деформации— линейное растяжение и простой сдвиг. При линейном растяжении (рис. 6, о) на брусок, имеющий первоначальную длину I и поперечное сечение 5, действует сила Р, вызывающая напряжение а=Р18. Под действием этой силы брусок упруго удлиняется на величину Д/. Закон Гука для этого случая выражается равенством о= =ЕА111=Ее. Здесь е—относительная упругая деформация, Е — коэффициент пропорциональности. Таким образом, для случая линейного растяжения напряжения растяжения в металле прямо пропорциональны упругому удлинению. При простом сдвиге (рис. 6,6) в образце возникают касательные напряжения т, которые так-  [c.38]


Молекулы т.вердых тел располагаются на очень малых расстояниях друг от друга и совершают колебания. Силы взаимодействия между ними очень велики и возрастают пропорционально изменению расстояния. Поэтому твердые тела сопротивляются сжатию, растяжению, изгибу, сдвигу, кручению. Напряжение а при упругой деформации твердого тела. пропорционально его относительной деформации А///. По закону Гука а=ЕА1 1, где Е — модуль упругости, I — размер тела. Л/ — величина деформации. Твердые тела не обладают легкоподвижностью, поэтому на твердое тело может действовать сосредоточенная сила, приложенная к одной точке. Механика твердого тела — это механика материальной точки или совокупности неподвижных, относительно друг друга, материальных точек.  [c.9]


Смотреть страницы где упоминается термин Силы упругости и закон Гука при деформации сдвига : [c.208]    [c.17]    [c.20]   
Смотреть главы в:

Курс общей физики Механика  -> Силы упругости и закон Гука при деформации сдвига



ПОИСК



166, 195, 401, 533,— сдвига 164, 203,400, — упругости,

Гука для сдвига

Гука закон при сдвиге

Гука)

Деформации 266 —Закон Гука

Деформация и закон Гука при сдвиге

Деформация при сдвиге. Закон Гука при сдвиге

Деформация сдвига

Деформация упругая

Закон Гука

Закон Гука (см. Гука закон)

Закон для сдвига

Закон упругости

Закон упругости (закон Гука)

Сила упругая

Сила упругости

Силы сдвигающие

Упругая деформация. Сдвиг

Упругие сдвиге

Упругие силы и деформации

Упругость закон Гука



© 2025 Mash-xxl.info Реклама на сайте