Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Голография в микроскопии

Первоначально метод Габора был предложен как средство компенсации аберраций электронного микроскопа, и до появления лазеров исследования проводились главным образом в этом направлении. В дальнейшем были предложены другие приложения голографии, и попытки использования голографии в микроскопии отошли на второй план.  [c.186]

Применение голографии в микроскопии основано главным образом на том, что реконструкцию можно осуществить светом, длина волны которого отлична от длины волны излучения, используемого при записи. Если при реконструкции используется более длинноволновое излучение, то происходит увеличение изображения. Таким образом, было бы очень выгодно записывать голограмму с помощью рентгеновского излучения, а реконструкцию осуществлять видимым светом. Таким методом можно было бы получить результаты, которые дает электронная микроскопия. Однако оборудование при этом было бы менее сложным без вакуумной аппаратуры, высокого напряжения, стабилизации напряжения и т. д. Однако осуществить непосредственно рентгеновскую микроскопию невозможно ввиду того, что не существует оптических элементов для рентгеновских лучей. С другой стороны, показатель преломления материалов в рентгеновском диапазоне равен единице и имеет место дифракция света на атомах.  [c.186]


Кроме рассмотренных применений голографии в микроскопии развиваются также методы, основанные на сочетании голографии  [c.188]

Применение голографии в микроскопии позволяет преодолеть серьезный недостаток микроскопа при сильном увеличении — очень малую глубину резкости изображения. Вместо того чтобы регистрировать изображение, можно записать на голограмме проходящую через микроскоп предметную волну. При восстановлении такой голограммы можно наблюдать находящиеся в разных плоскостях детали предмета, перемещая только оптическую систему наблюдения.  [c.389]

Голография может найти широкое применение в оптике и оптическом приборостроении. Сюда относятся возможности коррекции аберраций оптических систем наблюдение и регистрация изображений сквозь неоднородные и рассеивающие среды создание оптических приборов на принципах голографии, например микроскопов использование голографии для контроля операций в оптической технологии возможность создания принципиально новых оптических элементов, например мультипликаторов и т. п.  [c.260]

Работы, относящиеся к области исследования путей практического использования голографии сфокусированных изображений, начали появляться с 1970 года, когда были уже достаточно полно изучены физические основы метода. Определенное количество этих работ (см. [40, 51-53]) было посвящено вопросам улучшения качества изображения в микроскопии. В частности, использование голографии сфокусированных изображений, как показано в [53, 57], позволяет устранять спекл-шум в восстановленном изображении путем некогерентного восстановления полихроматическим излучением. При таком восстановлении область когерентности становится меньше размеров предельно разрешаемого пятна в изображении, и в каждом таком пятне уже не происходит когерентного сложения света, порождающего спекл-эффект.  [c.11]

Голография первоначально предназначалась для улучшения изображений в микроскопии. Однако к настоящему времени голо-графические микроскопы разработаны еще недостаточно, чтобы их можно было широко применять. Такое неудовлетворительное состояние дел связано с требованиями,, касающимися получения высокого разрешения и качества изображения. В будущем более тесное сотрудничество специалистов по оптике с биологами и медиками, по-видимому, приведет к тому, что голографический микроскоп получит общее признание как необходимый оптический прибор, Разработка регистрирующих сред более высокого качества и разнообразных по свойствам, более целесообразный подход к решению задач, которые ставят биология и медицина,— все это позволит сделать голографический микроскоп полезным и широко используемым прибором.  [c.632]


Что дает применение голографии в интерферометрии и микроскопии в системах оптической обработки информации  [c.390]

Установленная формальная аналогия, разумеется, не случайна. Как при голографировании, так и при отображении в линзовой либо зеркальной оптической системе речь идет о преобразовании одной сферической волны (предмета) в другую, также сферическую волну (изображения). Формальный вид закона такого преобразования (линейное преобразование кривизны волновых фронтов) предопределен самой постановкой задачи и никак не связан с конкретным способом его реализации. Любой способ, голографический или линзовый, может только изменить кривизну исходного волнового фронта в определенное число раз и добавить к ней новое слагаемое ), но не более того. Анализ физического явления, призванного осуществить эту процедуру, конкретизирует физический смысл соответствующего множителя и слагаемого и их зависимость от характеристик явления и конструктивных особенностей системы. Последнее оказывается очень существенным при сравнительном рассмотрении разных способов. Как уже упоминалось, применение разных длин волн на первом и втором этапе предоставляет голографии неизмеримо более широкие возможности, чем аналогичный фактор в линзовых и зеркальных системах (различие показателей преломления в пространстве изображений и предметов, иммерсионные объективы микроскопов, см. 97), ибо можно использовать излучение с очень сильно различающимися длинами волн, например, рентгеновское и видимое (когда будет создан рентгеновский лазер).  [c.253]

Из приведенного выше выражения для увеличения видно, что в голографии Фурье увеличенное изображение можно получить как за счет различия длин волн X н X, так и путем приближения объекта к голограмме (уменьшение г , которая действует, следовательно, как объектив микроскопа.  [c.256]

Основные физические идеи голографии были сформулированы Д. Габором в 1948 г. в связи с проблемой повышения разрешающей способности электронных микроскопов. Габор подтвердил свои теоретические соображения экспериментами в оптической области спектра. Однако в силу указанных трудностей голография развивалась очень медленно вплоть до создания оптических квантовых генераторов, излучение которых, по самому принципу их работы, исключительно монохроматично и обладает высокой степенью про-  [c.260]

Оптические приборы и оптические методы исследования широко применяются в самых разнообразных областях естествознания и техники. Напомним, например, об изучении структуры молекул с помощью их спектров излучения, поглощения и рассеяния света, а также о применении микроскопа в биологии, об использовании спектрального анализа в металлургии и геологии. Оптические квантовые генераторы неизмеримо расширяют возможности оптических методов исследования. Приведем несколько примеров, иллюстрирующих положение дела. Один из новых методов — голография — подробно описан в главе XI. Изучение атомно-молекулярных процессов, протекающих в излучающей среде лазеров, а также рассеяния света и фотолюминесценции с применением лазеров позволило получить большой объем сведений в атомной и молекулярной физике, равно как и в физике твердого тела. Оптические квантовые генераторы заметно изменили облик фотохимии с помощью мощного лазерного излучения могут производиться разделение изотопов и осуществляться направленные химические реакции. Благодаря монохроматичности излучения оптических квантовых генераторов оказывается сравнительно простыми измерения сдвига частоты, возникающего при рассеянии света вследствие эффекта Допплера этот метод широко используется в аэро- и гидродинамике для излучения поля скоростей в потоках газов и жидкостей.  [c.770]

Трудность расчетного определения полей деформаций и напряжений у вершины трещины привела к необходимости разработки и применения экспериментальных методов исследования деформаций и напряжений. В настоящее время достаточно хорошо разработаны и эффективно используются методы фотоупругих покрытий, сеток, муара, тензометрии, рентгеновского анализа, травления, дифракционных решеток, электронной микроскопии, фазовой интерференции, нанесения медных покрытий, голографии, прямого наблюдения полированной поверхности образцов (1, 10, 6, 34, 49, 56, 130, 187, 199, 260, 261, 287], позволяющие исследовать поля деформаций при статическом и циклическом  [c.15]


Изобретение в 1948 г. голографии Д. Габором, за которое ему была присуждена Нобелевская премия по физике 1971 г., основано на его работе по улучшению качества изображений, получаемых в электронной микроскопии. Результаты, полученные в 40-х годах с электронными микроскопами, оказались разочаровывающими, поскольку, несмотря на стократное улучшение в разрешающей способности по сравнению с лучшими оптическими микроскопами, разрешение оставалось далеким от теоретического значения. Быстрые электроны, используемые в электронной микроскопии, имеют длину волны де Бройля около 1/20 А, так что атомы должны разрешаться однако практически предел в то время составлял около 12 А. Основной причиной неудачи было наличие аберраций, связанных с использованием электронных линз. Именно при поиске путей решения этой проблемы Габором был создан метод, названный им восстановлением волнового фронта. Частично его идея исходила из принципов, заложенных в двухволновой микроскопии. У. Л, Брэгга (разд. 5.3.3). Он полагал, что если ему удастся зарегистрировать фазы так же, как и интенсивности в изображении электронного микроскопа,  [c.104]

Во всех успешных применениях голографии в микроскопии использовался внеосевой опорный пучок с плоским волновым фронтом [10—12J. Применение такой геометрии приводит к минимальным аберрациям [15] и позволяет легко получать восстанавливающую волну, идентичную опорной, независимо от того, исследуется ли действительное или мнимое изображение. Хорошее качество голограммы достигается, если угол между опорным и объектным пучками можно выбрать таким, что пространственная частота интерференционных полос в интерференционной картине намного ниже максимума разрешаю1цей способности фотопленки (рис. 3). Для пленки с максимальной разрешающей способностью 1000 линий на миллиметр расстояние между соседними интерференционными  [c.624]

Другим применением голографии в микроскопии является голо-графическая коррекция оптических аберраций объектива микроскопа (см. п. 6.2.3). Схема аналогична той, которая бьтла приведена на рис. 116. Изображение, которое формирует неидеальная линза L, восстанавливается при обращении хода восстанавливающей волны. При этом исключаются оптические аберрации линзы и изображение можно исследовать на разных глубинах.  [c.189]

Применение акустической голографии. На ннфразву-ковых и низких звуковых частотах методами Г. а. можно получить информацию о структуре земной коры, о подстилающей дно океана поверхности, выявить наличие крупномасштабных неоднородностей в естественных средах. В диапазоне звуковых и низких УЗ-волн методы Г. а. применяются в подводном звуковидении, бесконтактной диагностике машин и механизмов по собственному шумоизлучению, при изучении полей разл. колебат. конструкций и т. п. В диапазоне высоких УЗ-частот Г. а. используется для получения акустич. изображений в самых разл. областях науки и техники, напр, в микроскопии акустической для биол. исследований, п устройствах медицинской диагностики для получении информации о строении внутр. оргапов, в дефектоскопии для получения изображений внутр. дефектов материалов.  [c.514]

Сформировавшись как наука, голография постепенно начинает входить и в нашу повседневную жизнь. Сфера ее возможных практических приложений leoбычaйнo широка, и в этом нет ничего удивительного ведь по существу голография — чрезвычайно универсальный метод отображения и познания окружающего мира, который может равным образом использоваться фактически во всех областях человеческой деятельности, начиная от лингвистики и кончая исследованием процессов в термоядерной плазме. Главного приложения у этого метода также нет, как нет его, скажем, у линзы, которая применяется как в микроскопах, так и киноаппаратах, телескопах, биноклях и других устройствах. При таком изобилии возможностей весьма сложно дать достаточно полный обзор практических приложений голографии, более целесообразно ограничиться описанием методов, которые лежат в их основе. Методы голографии наряду со свойствами голограммы и ее закономерностями являются третьим основным компонентом этой новой науки.  [c.102]

После того как Габором была изобретена голография, многие исследователи начали работать в этой новой области. Хейн, Дайсон и Малви [20, 21] продолжили усилия по созданию качественных голограмм с помощью электронного микроскопа. Как и Габор, они получили не столь успешные результаты, которые хотелось бы иметь. Успеху препятствовали многочисленные трудности, связанные с практикой, такие, как нестабильности объекта и напряжения в источнике питания электронной линзы. Другие исследователи занимались чисто оптической голографией, в том числе Роджерс [32], Эль-Сам и Киркпатрик [14, 15], Бэз [1] и Ломанн [27]. Однако голографические изображения получались некачественными, и интерес к голографии постепенно падал, пока в 50-х годах почти совсем не прекратилась деятельность в этой области исследований. Основная причина получения плохого изображения таилась в наличии сопряженного изображения. Были и другие трудности, которые можно связать с членом [ul (т. е. с интерференцией волн, рассеянных различными  [c.15]

Даже в микроскопии видимого или ультрафиолетового диапазона голография Фурье дает ощутимые преимущества, например при fllo=25 и Г = 45° выигрыш составляет 10, а при f/go=50 и г = б4° выигрыш в разрешении превышает 30.  [c.152]

ЧТО высокого разрешения в голографической мпкроскопни можно ДОСТИЧЬ путем соответствующего изменения первоначального принципа голографии. В частности, они показали, что голограмма Фурье позволяет преодолеть эффект протяженного источника и проблему мелкозернистости фотоэмульсии, возникающие в обычной проекционной голографии. Вскоре после этого Строук [29] продемонстрировал метод получения голограммы Фурье с помощью безлинзового преобразования Фурье, при котором сохранялись исходные преимущества безлинзовой фотографии Габора. Совсем недавно Строук и др. [31] показали, что потери разрешения при использовании протяженных источников на стадии получения голограммы можно удивительным образом скомпенсировать путем применения на стадии восстановления другого протяженного источника с соответствующей структурой. Таким образом, проблема структуры источника в голографической микроскопии [11, 28, 29, 31, 48], по-видимому, окончательно разрешается с помощью безлинзовой голографии Фурье [29, 30] на основе когерентно-интерферометрического рассмотрения структуры освещающих источников.  [c.175]


Применения голографии в технике и для научных исследований весьма разнообразны. К ним относятся методы голографической интерферометрии, применения в технологии нанесения сложных микроизображений и исследовании неоднородностей материалов, создание голографических оптических элементов, голографическая микроскопия, голографическая обработка информации и др.  [c.395]

Дифракционная картина на голограмме не имеет ни малейшего сходства с предметом. При рассматривании ее в микроскоп в ней трудно усмотреть следы каких-либо закономерностей. И тем- не менее расположение, форма и интенсивность дифракционных пятен голограммы полностью определяются геометрической формой и физическими свойствами отражающей поверхности объекта. Голограмма в закодированной форме содержит полную информацию об амплитудах и фазах рассеянной волны, которая достаточна для ее восстановления и получения оптического изображения. Само название голография происходит от греческих слов голог — полный и графо — пишу и может быть переведено как полная запись .  [c.345]

Ф. 3. используется в устройствах для получения звукового изображения в системах звуковид< ния (см. Звупови-зор), в микроскопе акустическом, в системах звуковой голографии и т. п. в устройствах для формирования заданной диаграммы направленности акустич. излучателей и приёмников, в системах сканирования УЗ-вого луча в гидролокаторах, в приборах медицинской диагностики и др. в устройствах для концентрации УЗ-вой энергии с целью использования её в технологич. процессах, в УЗ-вой хирургии и т. п.  [c.367]

В микроскопии техника голографии позволяет расширить ее возможности. Такие объекты, как биологические образцы, взвешешные в жидкости, часто можно наблюдать только при сильном увеличении. Здесь для микроскопа характерна нрайн малая глубина поля. Это означает, что-три каждой определенной настройке в фокусе находится только часть, объекта, расположенная в какой-то одной плоскости. Чтобы образец  [c.105]

Первой областью практического применения голографии была микроскопия. Еще Д. Габор предложил получать голограммы с помощью электронных волн в электронном микроскопе, а для их восстановления пользоваться видимым светом. Возможно и обратное — получать голограмму в видимом свете, а пользоваться ею для фокусировки рентгеновского излучения. С помощью голографии решается также проблема визуализации акустических полей и на ее основе ряд задач дефектоскопии, получения трехмерных изображений вн>т ренних органов живого человека, изучения рельефа морского дна, зву-колокации, звуконавнгации, поиска полезных нскопае-мых, исследования внутренней структуры земной коры.  [c.98]

В этой связи создатель голографии Д. Габор в 1971 г. писал Пути науки часто неисповедимы. Электронная микроскопия так до сих пор и не извлекла существенной пользы из восстановления волн, тогда как мои оптические опыты (которые были задуманы как модельные) положили начало голографии. Хотя многие исследователи. .. достигли некоторых успехов в последующие годы, настоящее второе рождение голография пережила в 1962г., когда Э. Лейт иЮ. Упатниекс применили лазеры... .  [c.261]

Механические испытания в указанных направлениях были осуществлены с широким использованием средств измерения местных упругих и упругопластических деформаций (малобазной тензометрии, муара, сетки, оптически активных покрытий, голографии, интерферометрии) автоматизированных установок с управлением от ЭВМ и от программных регуляторов, имеющих электрогидравлический, электромеханический и электродинамический приводы систем измерения процессов повреждения и развития трещин (оптической микроскопии, метода электропотенциалов и электросопротивлений, датчиков последовательного разрыва, датчиков накопления повреждений, акустической эмиссии, анализа жесткости объекта нагружения) комбинированных (расчетно-эксперименталь-ных) методов и средств изучения напряженно-деформированных состояний и прочности для обоснования программ испытаний и анализа их результатов систем для проведения стендовых испытаний моделей и реальных конструкций, включающих указанные выше средства измерения и регистрации деформаций, накопленных повреждений и длин трещин (сосудов давления, трубопроводов, дисков и лопаток турбин, валов, элементов энергетических и транспортных установок, сварных конструкций).  [c.19]

Перечисленные факторы, влияющие на качество аку-стнч. голограмм и изображений, достаточно полно характеризуют гл, обр. техн. возможности самой голо-1 рафич. системы, но не акустич. изображение. Дело в в том, что оптнч. и акустич. изображения одного и того же предмета могут существенно отличаться друг от друга, поскольку механизмы взаимодействия звуковых н световых волн с веществом могут быть совершенно различными. Предмет может идеально отражать световые волны, но полностью поглощать акустические, и наоборот. На этом различии основано действие акустич. голография, микроскопов, предназначенных для исследования структуры клеток, к-рые без введения контрастной жидкости прозрачны для световых волн, но хорошо поглощают У 3-колебания.  [c.514]

Сканирующая лазерная М. а. представляет собой разновидность голографии акустической, предназначенную для визуализации малых объектов. При облучении плоской УЗ-волной объекта, помещённого в жидкость, фронт волны после прохождения образца искажается из-за неоднородных фазовых задержек, а амплитуда изменяется в соответствии с неоднородностью коэф. отражения и поглощения в объекте. Прошедшая волна падает на свободную поверхность жидкости и создаёт на ней поверхностный рельеф, соответствующий акустич. изображению объекта. Рельеф считывается световым лучом и воспроизводится на экране дисплея. Этот метод реализуется в лазерном акустич. микроскопе (рис. 1), где У 3-пучок, излучае-  [c.148]

Используемый в сканирующей лазерной М. а. способ визуализации не позволяет получать высокие разрешения. Лазерные акустич. микроскопы работают на частотах вплоть до HO K, сотен МГц и дают разрешение до 10 мкм. Одно из достоинств лазерного акустич. микроскопа — возможность одновременно получать оптич. и акустич. изображения и сравнивать их. Для количеств. измерений в лазерной сканирующей М. а. используются те же методы, что и в обычной акустич. голографии, напр. метод интерферограмм.  [c.148]

Аморфные и квазиаморфные тела, размеры частиц к-рых меньше разрешаемого в электронном микроскопе расстояния, рассеивают электроны диффузно. Для их исследования используются простейшие методы амплитудной Э. м. Напр., в ПЭМ контраст изображения, т. е. перепад яркостей изображения соседних участков объекта, в первом приближении пропорционален перепаду толщин этих участков. Для расчёта контраста изображений кристаллич. тел и решения обратной задачи—расчёта структуры объекта по наблюдаемому изображению—привлекаются методы фазовой Э. м. решается задача о дифракции электронов на кристаллич. решётке. При этом дополнительно учитываются неупругие взаимодействия электронов с объектом рассеяние на плазмонах, фононах и т. п, В ПЭМ и растровых ПЭМ (ПРЭМ) высокого разрешения получают изображения отд. молекул или атомов тяжёлых элементов пользуясь методами фазовой Э. м., восстанавливают по изображениям трёхмерную структуру кристаллов и биол. макромолекул. Для решения подобных задач применяют, в частности, методы голографии, а расчёты производят на ЭВМ.  [c.550]

Однако, подтверждая основную идею, результаты Габора ухудшались недостаточной длиной когерентности (только 0,1 мм) света от использованной ртутной лампы высокого давления и низким уровнем освещенности, получаемой после введения малой диафрагмы (диаметром 3 мкм) для обеспечения достаточной пространственной когерентности. Из-за этой и ряда других причин применение указанного метода в электронной микроскопии было неудачным. Как отмечал Габор, голография была надолго заброшена. Возрождение наступило после работы Е.Н. Лейта и Дж. Упатникса [33]. Успех их был обусловлен тем, что они обнаружили сходство процесса восстановления волнового фронта Габора с принципами теоретической работы, выполненной Лейтом с сотрудниками по локатору бокового обзора. В них предусматривалось применение бокового опорного освещения, что обеспечивало существенное улучшение характеристик [34, 35]. Затем в этих разработках были использованы незадолго до того созданные лазеры и сочетание этих двух достижений привело к более универсальному и улучшенному процессу голографии.  [c.106]


Все эти недостатки сильно ограничивали область применения метода, и поэтому в течение десятилетия он развивался, главным образом, 9 приложении к некоторым задачам электронной и рентгеновской микроскопии. О возможности получения объемных оптических изображений естественных объектов в то время даже не упоминалось. И все же, несмотря на все недостатки и граничения этого метода, имеино Габор признан основателем голографии. И это, безусловно, правильно основной отличительной чертой голограммного метода является использование референтной волны, а Габор был первым человеком, который записал волновое поле с ее помощью.  [c.52]

С точки зрения практического использования перспективными для голографии изображений представляются методы хранения и обработки опти-ческсй информации, микроскопия, в том числе интерференционная, измерение смещений и деформаций на основе голографической и спекл41итерферо-метрии, а также реализация голографического кинофильма.  [c.217]

Во втором томе настоящей книги рассматриваются главным образом различные применения голографии. Голографические запоминающие устройства для цифровой вычислительной техники, получение голографических двумерных и трехмерых дисплеев, голографическая интерферометрия, оптическая обработка информации и распознавание образов, голографическая микроскопия, создание голографических оптических элементов, спектроскопия, голографическая запись контуров объектов, размножение изображений, получение портретов голографическими средствами и, наконец, голографическая фотограмметрия — таков общий круг областей применения голографии, который подробно рассмотрен в гл. 10.  [c.8]

Важную роль как предшественники голографии сыграли работы Брэгга [4—6] в рентгеновской микроскопии и еш,е раньше работы Вольфке [36]. Исследования Брэгга были связаны также с получением полной записи рассеянного волнового поля от объекта, а именно от кристалла, облученного рентгеновскими лучами. Как и голография, метод Брэгга представлял собой двухступенчатый дифракционный процесс. Зафиксированное на фотопленке рентгеновское излучение, рассеянное кристаллом, использовалось затем для восстановления аналогичной волновой картины в видимом свете. Брэгг, как и Вольфке, рассматривал кристалл в виде трехмерной периодической структуры следовательно, если кристалл освещается плоской волной, то в соответствии с правилами брэгговской дифракции в каждый момент времени создается только одна составляющая (пространственная частота) дифрагированной волны. С точки зрения теории это различие непринципиально. В любом случае необходимо записать фазу и амплитуду, однако детекторы позволяют регистрировать лишь амплитуду. В методе Брэгга кристалл выбирался такой симметрии, что дифракционная картина (фурье-образ) в дальнем иоле, создаваемая точками объекта, становилась вещественной, т. е. лишенной какой-либо фазовой модуляции. Кроме того, исследуемые кристаллы имели в центре ячейки тяжелый атом, что обеспечивало смещенный фон, в результате чего фурье-образ представлял собой не только вещественную, но и положительную величину. Таким образом, достаточно было измерить только амплитуды плоских волн, соответствующих фурье-компонентам. Брэггу оставалось лишь, после того как он записал амплитуду волны, сконструировать маску с отверстиями, расположение и размер которых соответствовали бы значениям фурье-компонент. При освещении маски когерентным светом формировалась бы дифракционная картина дальнего поля, представляющая собой изображение атомной структуры кристалла. Эти исследования были продолжены Бюргером [7] и Бёршем [3], выполнившими аналогичные эксперименты в ФРГ.  [c.13]


Смотреть страницы где упоминается термин Голография в микроскопии : [c.621]    [c.626]    [c.186]    [c.351]    [c.389]    [c.503]    [c.188]    [c.72]    [c.256]    [c.303]    [c.216]    [c.102]    [c.9]   
Смотреть главы в:

Голография Теория,эксперимент,применение  -> Голография в микроскопии



ПОИСК



Голография

Голография как дополнение к микроскопии

Микроскоп

Микроскопия

Микроскопия микроскопы



© 2025 Mash-xxl.info Реклама на сайте